» www.Giftbox.Az - Bir birindən gözəl hədiyyə satışı
ウィキペディアランダム
毎日カテゴリ
共有: WhatsappFacebookTwitterVK

木部

木部 (もくぶ、: xylem) とは、維管束植物 (シダ植物種子植物) の維管束を構成する2つの複合組織のうちの1つであり (もう1つは師部)、道管仮道管組織、木部繊維組織、木部柔組織からなる (図A, B)。また、形成される場所によって、頂端分裂組織に由来する一次木部 (図A) と、維管束形成層に由来する二次木部 (図B) に分けられる。木本植物 (いわゆる木) では、ふつう茎や根の大部分は二次木部 () で占められる。木部は、水や無機養分の通道 (図C)、および植物体の機械的支持の役割を担っている。

A. ヒマワリ (キク科) のの一次木部:
厚い細胞壁 (赤色) の大型の細胞は道管要素、その周囲の薄い細胞壁の細胞は木部柔細胞、やや左下の厚い細胞壁をもつ小型の細胞は木部繊維 (その左下は師管、左下隅の厚壁細胞は師部繊維)。
B. ナラ (ブナ科) のの二次木部:
大型から中型の細胞は道管要素、大部分を占める小型の細胞は木部繊維であり、横向きの筋のような構造は木部柔細胞からなる放射組織。
C. 木部 (xylem) は根で吸収された水・無機養分 (水色) の通路となり、また植物体を支える強度を付与する。一方、師部 (phloem) は光合成産物 (オレンジ色) などの有機物の通路となる。

構成

木部は、管状要素 (道管要素や仮道管)、木部繊維木部柔細胞からなる[1][2][3] (図A, B)。これらの細胞は、木部要素 (xylem elements) ともよばれる[2]。木部柔細胞以外は、ふつう木化 (リグニン化) した厚い二次細胞壁をもつ死んだ細胞 (成熟した段階では原形質を失う) である。

管状要素

管状要素 (かんじょうようそ、tracheary element) は管状の死細胞 (成熟した状態では原形質を失う) であり、リグニンを含む二次細胞壁によって肥厚した細胞壁からなる[2][3]。管状要素の二次肥厚の様式には多様性があり、環紋肥厚、らせん紋肥厚、階紋肥厚、網紋肥厚、孔紋肥厚などがある[2][3] (→詳細は(道管#管状要素の肥厚様式)を参照)。維管束植物の管状要素には、道管要素仮道管がある[2][3][4]。いずれも、地下でによって吸収された水や無機養分が地上部のに供給される際の通路となる (→詳細は(道管#木部輸送)を参照)。仮道管の場合は、通道に加えて植物体の機械的支持も担っている[5][6][7]

 
1a. トウモロコシ (イネ科) の茎の縦断面: 中央付近に階紋肥厚をもつ道管が見える。

被子植物の多くは道管要素 (導管要素、vessel element) をもち、上下端で縦につながって道管 (導管、vessel) を形成している[2][3][6][8][9] (図1a)。道管要素どうしの隔壁には穿孔 (せん孔、perforation) とよばれる孔があり、上下の空間は連続している[3][8][10]。道管要素は仮道管 (下記) にくらべると太く短いことが多い[6]

 
1b. コロラドモミ (マツ科) の仮道管組織の縦断面: 仮道管の間は壁孔 (二重円構造として見える) で通道している。

被子植物以外の維管束植物 (シダ植物裸子植物) はふつう道管をもたず、仮道管 (仮導管、tracheid) からなる仮道管組織 (仮導管組織、tracheid tissue) が存在する[2][3][5][6] (図1b)。仮道管は道管要素に較べて細長く、両端が尖った紡錘形であり、穿孔をもたない[2][3][5][6][11]。水や無機養分は細胞壁が肥厚していない部分を通して通道する[2][3][11]。この細胞壁が薄い部分はしばしば孔状であり、壁孔 (pit) とよばれる (完全な孔ではなく一次細胞壁で仕切られている)[2][3]。壁孔は道管要素にも存在する[12]

被子植物の多くは道管をもつが、アンボレラ科シキミモドキ科ヤマグルマ科、さまざまな水生植物 (スイレン科ウキクサなど) のように道管をもたないものもおり、無道管被子植物とよばれる[3][6][13]。一方、シダ植物裸子植物の中には、イワヒバ属 (ヒカゲノカズラ綱)、トクサ属 (トクサ亜綱)、ワラビ (ウラボシ亜綱)、グネツム綱のように道管をもつものも少数知られる[2][3][6]

木部繊維

 
1c. ナラ (ブナ科) の二次木部縦断面 (接線断面): やや太く仕切りがある列は道管、丸い細胞が縦にならんだものは放射柔組織、それ以外の細長い細胞は木部繊維。

道管をもつ植物は、木部繊維 (もくぶせんい、xylem fiber, wood fiber) からなる木部繊維組織 (xylem fiber tissue, wood fiber tissue) をもつ[1][2][3][6][14] (図1c)。木部繊維は細長い死細胞 (成熟した状態では細胞壁のみ) であり、仮導管 (上記) に類似しているが、より厚く肥厚してふつう通道能はほとんどなく、壁孔もあまり発達していない[1][2][6][14][15]。ただし仮道管と繊維は、下記のように中間的なものもあり、明瞭には区別できない[15]。管状要素として仮道管が主である植物では仮道管が植物体の機械的支持に用いられるが、道管が主である植物では木部繊維組織が植物体の機械的支持に用いられている[1][6][7][14]

木部繊維はいくつかのタイプに類別されることがある。繊維仮道管[5][14] (繊維状仮道管[15] fiber tracheid) は疎ではあるが有縁壁孔をもち、仮道管に似ている[3][15] (上記のように仮道管と繊維の明確な区分は不可能であると考えられている[15])。一方、真正木繊維[16] (師部様繊維[14] libriform wood fiber) は有縁壁孔を欠き、単壁孔をもつ[15]。また二次木部には、二次細胞壁形成後に細胞分裂して隔壁を形成した繊維が存在することがあり、隔壁繊維 (隔壁細胞[3] septate fiber; 隔壁木繊維 septal wood fiber) とよばれる[14][15]。同様に原形質を残したものとして、木部柔細胞 (下記) に似た代用繊維 (substitute fiber) とよばれるものもある[14]。隔壁繊維や代用繊維は機械的支持と共に養分貯蔵にも機能していると考えられている[14]

木部柔細胞

 
1d. マツ属 (マツ科) の二次木部横断面: 中央付近に柔細胞で囲まれた樹脂道が存在する。横に伸びる放射柔組織も見える。細胞内に見える黒丸は染色されたであり、これらの細胞が生細胞であったことを示す。
 
1e. ナラ (ブナ科) の二次木部接線断面: 左側に大きな広放射組織があり、ほかにも多数の単列放射組織が散在している。

木部に存在する柔細胞は木部柔細胞 (もくぶじゅうさいぼう、xylem parenchymatous cell) とよばれ、柔組織である木部柔組織 (xylem parenchyma) を形成している[1][3]。木部柔細胞は、基本的に木部における唯一の生細胞である。柔細胞はふつう薄い一次細胞壁をもつが、木部柔細胞の細胞壁はときに肥厚し、単壁孔をもつものもある[1][3]。木部柔細胞の主な機能は樹脂結晶などの貯蔵であり、ほかにも物質生産や物質輸送にも関わっている[1][3][17][18]

二次木部 (下記) の木部柔細胞には、多くの管状要素と同様に長軸方向に連なる軸方向柔組織 (axial parenchyma; 紡錘形柔組織 fusiform parenchyma) と、放射方向にならんだ放射柔組織 (ray parenchyma, radial parenchyma) がある[1][3][17][18]。被子植物の軸方向柔組織は、道管とは独立して存在する独立柔組織 (apotracheal parenchyma) と、道管に接して存在する随伴柔組織 (paratracheal parenchyma) に大別される[18][19]。放射柔組織の中には、縦に1列に並んだもの (単列放射組織 uniseriate ray) や、複数列に並んだもの (多列放射組織 multiseriate ray) がある[18][19] (図1d, e)。また放射柔細胞は、放射方向に長い平伏細胞 (procumbent ray cell)、長軸方向に長い直立細胞 (upright ray cell)、等径的な方形細胞 (square ray cell) に類別される[18]。このうち1種類の細胞だけからなるものを同形放射組織 (homocellular ray)、複数の種類の細胞が混在するものを異形放射組織 (heterocellular ray) とよぶ[18][19]。放射組織の分布様式に基づく区分もあり、同サイズの放射組織が均等に散在しているものは散在放射組織 (diffuse ray) とよばれる[18]。一方、小型の放射組織が密集しているものは集合放射組織 (aggregate ray) とよばれ (ハンノキ属など)、さらに密集化して1個の大きな放射組織となったものは広放射組織 (broad ray; 複合放射組織 compound ray) とよばれる[18] (コナラ属など; 図1e)。

木部柔細胞の中には、それぞれ特殊な物質を含む異形細胞 (周囲の細胞と極端に異なる形をした細胞) として油細胞 (oil cell)、結晶細胞 (crystalliferous cell)、多室結晶細胞 (chambered crystalliferous cell) などが存在することがある[18]。例えばイチョウ (イチョウ科) の木部には、シュウ酸カルシウムの結晶を含む異形細胞が存在する[17]。また二次木部では、軸方向または水平方向に分泌道 (secretory canal) がしばしば見られ、乳管 (latex tube) やタンニン管 (tanniferous tube) が存在することもある[19]球果類の木部では、エピセリウム細胞 (epithelial cell) とよばれる柔細胞で囲まれた細胞間隙が存在することがある[17]。この間隙はエピセリウム細胞が分泌する樹脂で満たされ、樹脂道 (resin canal) とよばれる (図1d)。

一次木部と二次木部

木部は、形成される場所に応じて一次木部と二次木部に分けられる[1][3][20][21]

一次木部

 
2a. カボチャ属 (ウリ科) の茎の一次木部. 中央付近にらせん紋道管 (原生木部)、左側に太い階紋道管 (後生木部) が存在.

頂端分裂組織 (シュート頂分裂組織、根端分裂組織) に由来する前形成層 (procambium) から形成される木部は、一次木部 (primary xylem) とよばれる[3][20]。全ての維管束植物は、一次木部をもつ。

一次木部のうち、最初に分化する部分を原生木部 (protoxylem)、その後に分化する部分を後生木部 (metaxylem) とよぶ[3][20] (図2a)。原生木部の管状要素は直径が小さく、二次細胞壁の肥厚様式はふつう(環紋やらせん紋)である[2][3][20]。一方、後生木部の管状要素は大きく発達しており、二次細胞壁の肥厚様式は(階紋、網紋、または孔紋)であることが多い[3][20]。原生木部は、軸の伸長や後生木部の発達に伴って崩壊し、破生細胞間隙 (細胞の崩壊によって生じた細胞間隙) となることがあり、特に原生木部間隙 (原生木部腔 protoxylem cavity, protoxylem lacuna) ともよばれる[3][22][23] (例:スギナススキ)。

原生木部と後生木部の位置関係 (つまり木部の発生順序) は植物群およびその器官によって異なっており、以下のように類別される[20][24]

  • 外原型木部 (exarch xylem):外端に原生木部が形成され、その後に内側の後生木部が形成される (つまり発生は求心的)。大葉植物 (大葉シダ植物種子植物) の (下図2b)、小葉植物に見られる。
  • 中原型木部 (mesarch xylem):中間部に原生木部が形成され、その後に内側と外側に後生木部が形成される。大葉シダ植物の茎に多く見られる (下図2c)。
  • 内原型木部 (endarch xylem):内端に原生木部が形成され、その後に外側の後生木部が形成される (つまり発生は遠心的)。種子植物の茎に見られる (下図2d)。同じく遠心的に形成されるが、維管束が中心に1個だけ存在し中心の原生木部から外側へ成熟するものは特に心原型木部 (centrarch xylem) ともよばれ、リニア属などの初期維管束植物の茎、小葉植物の根に見られる[25]
 
2b. キンポウゲ属 (キンポウゲ科) の根の維管束 (放射中心柱): 木部 (細胞壁が赤く染色された大きな細胞からなる部分) は3方向に突出しており、外縁部に直径が小さい細胞からなる原生木部、中心側に直径が大きな細胞からなる後生木部がある (つまり外原型木部)。
 
2c. ワラビ属 ((薄嚢シダ)) の根茎の維管束 (網状中心柱の一部、写真上または下側が中心側): 木部 (細胞壁が赤く染色された大型の細胞からなる部分) のうち、直径が小さい細胞からなる原生木部が中心部にある (つまり中原型木部)。
 
2d. シャジクソウ属 (マメ科) の茎の維管束 (真正中心柱の一部、写真下が中心側): 木部 (細胞壁が赤く染色された大型の細胞からなる部分) のうち、内側 (写真下側) に直径が小さい細胞からなる原生木部がある (つまり内原型木部)。

二次木部

において、一次木部と一次師部の間に生じた分裂組織である維管束形成層 (単に形成層とよばれることも多い) から形成された木部は、二次木部 (次生木部、二期木部、secondary xylem) とよばれる[3][21][26] (下図3)。二次木部は、ふつう維管束形成層の内側に付加されていく[21] (下図3)。維管束形成層による二次成長を行う植物 (いわゆる木本植物) は、二次木部をもち、このような植物ではふつう茎や根のほとんどは二次木部で占められている。生物学における木材 (wood) は、二次木部のことを意味する[27][28]。二次木部では、一次木部にくらべて構成要素が放射方向に整然と並んでいる傾向がある[21]

 
3a. 木本の模式図: 1. 髄、2, 3. 二次木部 (材)、4. 維管束形成層、5. 二次師部など (靱皮)、6. 周皮(二次木部は維管束形成層から内側に向けて形成される)
 
3b. マツ属 (マツ科) のの横断面: 二次木部 (細胞壁が明瞭に見える領域) が発達し、中心部3/4ほどを占めている。
 
3c. ユリノキ属 (モクレン科) のの横断面: 左側の緑色の部分の内縁が維管束形成層、中央の淡色部が髄 (その周縁がおそらく一次木部の残骸)、その間が4年分の二次木部であり、明瞭な放射組織も見える (師部の放射組織と連続している)。

維管束形成層には、細長い紡錘形始原細胞 (fusiform initial) と、ほぼ等径の放射組織始原細胞 (ray initial) が存在する[21]。紡錘形始原細胞からは、道管要素仮道管のような管状要素、木部繊維、および軸方向柔細胞が形成される[26][29]。一方、放射組織始原細胞からは、放射柔細胞が形成され、球果類では放射方向に伸びる放射仮道管 (ray tracheid) も形成されることがある[17][29][30]。また被子植物では、2つの道管要素を穿孔を通してつなぐ特殊な細胞が形成されることがあり、有穿孔放射組織細胞 (perforated ray cell) とよばれる[18][19]。このような放射組織始原細胞に由来する細胞からなる組織は、放射組織 (ray) とよばれる[3][17][30] (上図3)。同一の放射組織始原細胞に由来する放射組織は、木部へ伸びるもの (木部放射組織、xylem ray) と、師部へ伸びるもの (師部放射組織、phloem ray) が連続している[30] (上図3c)。放射組織の機能は、同化産物など物質の貯蔵と、放射方向の物質輸送にある[18]

心材と辺材

 
4a. ヨーロッパイチイ (イチイ科) の茎の横断面: 周縁部の辺材と中央部の心材がはっきり分かれている。
 
4b. シタン (マメ科) の心材は紫褐色、重厚で緻密であり、珍重される (紫檀)。

軸 () の周縁部にある二次木部、つまりより新しい二次木部は辺材 (splint wood、液材 sapwood) とよばれる[27][28][31][32]。辺材は軸方向柔組織や放射柔組織など生きた細胞を含み、支持機能と共に通道機能や貯蔵機能をもつ[28][32]。色素などをあまり含んでいないため、心材にくらべて色が薄く、俗に白太、白材ともよばれる[28][32] (図4)。一方、軸の中心部にある二次木部、つまりより古い二次木部は心材 (heartwood, heart wood) とよばれる[27][31][33]。心材には生きた細胞が全く存在せず、通道機能や貯蔵機能が失われている[33][31]。一方でふつう硬化し、機械的支持機能が増している[28][33]リグニンポリフェノールなどが多く沈着し、しばしば着色しているため、俗に赤心、赤身、赤味、赤肌、赤材ともよばれる[28][33] (図4)。コクタン (カキノキ科) やシタン (マメ科) はその名が示す色をした心材が利用されている[28] (図4b)。またロッグウッド (マメ科) の心材から抽出されるヘマトキシリンは、細胞核などの染色剤として用いられる[28]。辺材と心材の境界部は移行材 (intermediate wood, transition zone) とよばれ[32][34]フラボノイド合成系などの活性が高く、ポリフェノールフラボノイドなどの心材成分が生成されている[31]。一方で、トドマツ (マツ科) やアオダモ (モクセイ科) のように心材成分が少なく、心材と辺材の区分が不明瞭なものもいる[27]

また辺材でも、その全てが通水に用いられているわけではない。最も新しい (つまり最外の) 年輪のみで通水するもの (例:ヤマウルシ)、各年輪の外側 (後半部) で通水するもの (例:ネコヤナギ)、各年輪の内側 (前半部) で通水するもの (例:イヌブナ) などが知られている[8]

年輪

 
5a. シナノキ属 (アオイ科) の茎の年輪 (3年分): 外側がより新しい。
 
5b. マツ属 (マツ科) の茎の二次木部横断面: 早材 (左) と前年度の晩材 (右) の境界 (年輪界) が明瞭。

維管束形成層から1年間に形成された二次木部は管状になり、年輪 (annual ring) とよばれる[26][28][35]。四季がある地域では維管束形成層の活動が季節によって大きく変動するため、1年ごとの年輪が明瞭に区別できることが多い (図5)。春から初夏にかけてつくられた二次木部は早材 (early wood, earlywood; 春材 spring wood) とよばれ、管状要素 (道管要素や仮道管) の径が太く、比較的柔らかく明色であることが多い[27][28][32]。一方、夏から秋にかけてつくられた二次木部は晩材 (late wood, latewood; 夏材 summer wood; 秋材 autumn wood) とよばれ、管状要素の径が細く緻密であり、比較的硬く色が濃いことが多い[27][28]。晩材と次の年の早材の間には明瞭な境界が存在することが多く、この境界は年輪界 (annual ring boundary) とよばれる[28][35] (図5b)。一方、四季が不明瞭な地域 (熱帯) では、年輪がはっきりしないことが多い。また雨期と乾期に対応して形成された年輪様の構造は成長輪 (growth ring) ともよばれる[35]。年輪の幅は環境条件によって変動するため、これをマーカーとした木材の年代推定が広く行われている (年輪年代学[注釈 1])。

材のタイプ

 
6a. 材の走査型電子顕微鏡像: (上) ナラ (ブナ科) の材は有孔材であり硬材。(下) マツ (マツ科) の材は無孔材であり軟材。

二次木部 (材) は、道管の有無やその配列などに多様性があり (図6a)、それに応じて以下のように類別される[8][28][37][38][39]。材における各要素の形、大きさ、密度、配列様式などには大きな多様性があり、材から樹種を同定できる[19][40]

 
6b. イチイ属 (イチイ科) の材 (無孔材)
 
6c. カエデ属 (ムクロジ科) の材 (散孔材)
 
6d. クルミ属 (クルミ科) の材 (半散孔材)
 
6e. アメリカトネリコ (モクセイ科) の材 (環孔材)
 
6f. ニレ属 (ニレ科) の材 (環孔材、孔圏外道管は接線状)

また横断面 (木口面) からみた道管の配列様式 (環孔材の場合は特に晩材部において) に応じて以下のように類別されることもある[8][28][44]

ギャラリー

脚注

[脚注の使い方]

注釈

  1. ^ 樹木の年輪パターンを分析することによって年代を科学的に考察し、決定していく年輪年代学は、地球の公転回数の正確な情報をもつところから、データの集積から暦年代まで判明できることも多く、考古学研究において応用され、多大な成果を上げている[36]

出典

  1. ^ a b c d e f g h i 『岩波 生物学辞典 第5版』 (2013) 「木部」 p.1396
  2. ^ a b c d e f g h i j k l m n 原 (1994) pp.80–85, 91
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa 清水 (2001) 「木部」 pp.182–185
  4. ^ 『岩波 生物学辞典 第5版』 (2013) 「管状要素」 p.264
  5. ^ a b c d 『岩波 生物学辞典 第5版』 (2013) 「仮道管」 p.232
  6. ^ a b c d e f g h i j 岡本 (1997) pp.134–138
  7. ^ a b 大山 (2011) pp.21–25
  8. ^ a b c d e 佐野 & 内海 (2011) pp.59–66
  9. ^ 『岩波 生物学辞典 第5版』 (2013) 「道管」 pp.977–978
  10. ^ 『岩波 生物学辞典 第5版』 (2013) 「穿孔」 pp.803–804
  11. ^ a b 佐野 (2011) pp.53–55
  12. ^ 佐野 (2011) pp.53–55
  13. ^ 田村 (1999) pp.137-143
  14. ^ a b c d e f g h 『岩波 生物学辞典 第5版』(2013) 「繊維」 p.799
  15. ^ a b c d e f g 佐野 & 内海 (2011) pp.67–68
  16. ^ 『学術用語集 植物学編』 (1990) p.230
  17. ^ a b c d e f 佐野 (2011) pp.55–58
  18. ^ a b c d e f g h i j k 佐野 & 内海 (2011) pp.68–73
  19. ^ a b c d e f g ルダル (1997) pp.41–52
  20. ^ a b c d e f 『岩波 生物学辞典 第5版』(2013) 「一次木部」 p.73
  21. ^ a b c d e 『岩波 生物学辞典 第5版』(2013) 「二次木部」 p.1036
  22. ^ 高部 (2011) pp.77–78
  23. ^ 『学術用語集 植物学編』 (1990) p.47
  24. ^ ギフォード & フォスター (2002) pp.48–51
  25. ^ Simpson (2006) p.78
  26. ^ a b c 原 (1994) pp.134–139
  27. ^ a b c d e f 船田 (2011) pp.15–20
  28. ^ a b c d e f g h i j k l m n 清水 (2001) 「材」 pp.193–195
  29. ^ a b 船田 (2011) pp.46–52
  30. ^ a b c 『岩波 生物学辞典 第5版』 (2013) 「放射仮道管」 p.1296, 「放射組織」 p.1299
  31. ^ a b c d 中田 & 船田 (2011) pp.117–124
  32. ^ a b c d e 『岩波 生物学辞典 第5版』(2013) 「辺材」 p.1285
  33. ^ a b c d 『岩波 生物学辞典 第5版』(2013) 「心材」 p.703
  34. ^ 中田 (2014) pp.63–79
  35. ^ a b c 『岩波 生物学辞典 第5版』(2013) 「年輪」 p.1061
  36. ^ 『考古学キーワード』 (1997) pp.58–59
  37. ^ 『岩波 生物学辞典 第5版』 (2013) 「材」 p.507
  38. ^ 『岩波 生物学辞典 第5版』(2013) 「散孔材」 p.550
  39. ^ 『岩波 生物学辞典 第5版』(2013) 「環孔材」 pp.260–261
  40. ^ 木材データベース. 森林総合研究所. (2020年4月21日閲覧)
  41. ^ a b 清水 (2001) pp.23–24
  42. ^ a b 『岩波 生物学辞典 第5版』 (2013) 「無孔材」 pp.1368–1369
  43. ^ a b Bowes & Mauseth (2008) pp.68–71
  44. ^ 『岩波 生物学辞典 第5版』 (2013) 「紋様孔材」 p.1402

参考文献

一般書籍

  • 福島和彦・船田良・杉山淳司・高部圭司・梅澤俊明・山本浩之 編『木質の形成 第2版 -バイオマス科学への招待-』海青社、2011年10月、593頁。ISBN (978-4860992521)。 
    • 船田良「木材の構造と形成」『木質の形成 第2版 -バイオマス科学への招待-』海青社、2011年、15-20頁。 
    • 大山幹成「木材の構造と進化」『木質の形成 第2版 -バイオマス科学への招待-』海青社、2011年、21-25頁。 
    • 船田良「木部細胞の分化・成熟」『木質の形成 第2版 -バイオマス科学への招待-』海青社、2011年、46-52頁。 
    • 佐野雄三「仮道管」『木質の形成 第2版 -バイオマス科学への招待-』海青社、2011年、53-55頁。 
    • 佐野雄三「軸方向柔細胞、放射組織、樹脂道とエピセリウム細胞」『木質の形成 第2版 -バイオマス科学への招待-』海青社、2011年、55-58頁。 
    • 佐野雄三 & 内海泰弘「道管」『木質の形成 第2版 -バイオマス科学への招待-』海青社、2011年、59-66頁。 
    • 佐野雄三 & 内海泰弘「木部繊維」『木質の形成 第2版 -バイオマス科学への招待-』海青社、2011年、67-68頁。 
    • 佐野雄三 & 内海泰弘「軸方向柔細胞、放射組織」『木質の形成 第2版 -バイオマス科学への招待-』海青社、2011年、68-73頁。 
    • 高部圭司「単子葉植物の構造と形成 道管」『木質の形成 第2版 -バイオマス科学への招待-』海青社、2011年、77-78頁。 
    • 佐野雄三「壁孔」『木質の形成 第2版 -バイオマス科学への招待-』海青社、2011年、93-97頁。 
    • 中田了五 & 船田良「心材の構造と形成」『木質の形成 第2版 -バイオマス科学への招待-』海青社、2011年、117-124頁。 
  • 安蒜政雄 編『考古学キーワード』有斐閣有斐閣双書〉、1997年11月、252頁。ISBN (4-641-05860-1)。 
  • 岡本素治 著「9章 被子植物にみる多様性と系統」、加藤雅啓 編『植物の多様性と系統』裳華房〈バイオディバーシティ・シリーズ (2)〉、1997年10月、131-180頁。ISBN (978-4-7853-5825-9)。 
  • 田村道夫『植物の系統』文一総合出版、1999年2月、222頁。ISBN (978-4829921265)。 
  • (原襄)『植物形態学』朝倉書店、1994年7月、180頁。ISBN (978-4254170863)。 
  • 清水建美『図説 植物用語事典』八坂書房、2001年7月、323頁。ISBN (978-4896944792)。 
  • アーネスト・ギフォード & エイドリアンス・フォスター 著、長谷部光泰・鈴木武・植田邦彦 訳『維管束植物の形態と進化』文一総合出版、2002年3月、643頁。ISBN (978-4829921609)。 
  • ポーラ・ルダル 著、鈴木三男・田川裕美 訳『植物解剖学入門 ―植物体の構造とその形成―』八坂書房、1997年4月、197頁。ISBN (978-4896946963)。 * Bowes, B. & Mauseth, J. D. (2008). “Xylem, Structure of wood”. Plant Structure: A Colour Guide 2nd Edition. Jones & Bartlett Learning. pp. 288. ISBN (978-0763763862) 
  • Simpson, M. (2006). Plant Systematics. Academic Press. pp. 590. ISBN (978-0126444605) 

事典・辞典等

雑誌論文

  • 中田了五「樹木の wetwood 現象と定義」『木材学会誌』第60巻、2014年、63-79頁、NAID 130004775936。 

関連項目

外部リンク

  • 福原達人 (2019) 1-3. 木部・篩部. 植物形態学. 福岡教育大学. (2020年3月7日閲覧)
  • 維管束 光合成事典. 日本光合成学会. (2020年3月7日閲覧)
  • 木材データベース. 森林総合研究所. (2020年3月25日閲覧)
  • 東南アジア産材の木材特性データベース. 森林総合研究所. (2020年3月25日閲覧)
  • 『(木部)』 - コトバンク

ウィキペディア、ウィキ、本、library、論文、読んだ、ダウンロード、自由、無料ダウンロード、mp3、video、mp4、3gp、 jpg、jpeg、gif、png、画像、音楽、歌、映画、本、ゲーム、ゲーム。