» www.Giftbox.Az - Bir birindən gözəl hədiyyə satışı
ウィキペディアランダム
毎日カテゴリ
共有: WhatsappFacebookTwitterVK

キセノン

キセノン: xenon: Xenon [ˈkseːnɔn])は原子番号54の元素元素記号Xe貴ガス元素の一つ。ラムゼー (W. Ramsay) と(トラバース)(英語版) (M. W. Travers) によって1898年に発見された[3]

ヨウ素 キセノン セシウム
Kr

Xe

Rn
54Xe
外見
無色気体、高電圧電界中で青色を示す


キセノンのスペクトル線
一般特性
名称, 記号, 番号 キセノン, Xe, 54
分類 貴ガス
, 周期, ブロック 18, 5, p
原子量 131.293(6)
電子配置 [Kr] 5s2 4d10 5p6
電子殻 2, 8, 18, 18, 8((画像))
物理特性
気体
密度 (0 °C, 101.325 kPa)
5.894 g/L
融点 (101.325 kPa)161.4 K, -111.7 °C, -169.1 °F
沸点 (101.325 kPa)165.03 K, -108.12 °C, -162.62 °F
三重点 161.405 K (−112 °C), 81.6[1] kPa
臨界点 289.77 K, 5.841 MPa
融解熱 (101.325 kPa)2.27 kJ/mol
蒸発熱 (101.325 kPa)12.64 kJ/mol
熱容量 (25 °C) 5 R/2 = 20.786 J/(mol·K)
蒸気圧
圧力 (Pa) 1 10 100 1 k 10 k 100 k
温度 (K) 83 92 103 117 137 165
原子特性
酸化数 8, 6, 4, 2, 1, 0(弱酸性酸化物
電気陰性度 2.6(ポーリングの値)
イオン化エネルギー 第1: 1170.4 kJ/mol
第2: 2046.4 kJ/mol
第3: 3099.4 kJ/mol
共有結合半径 140±9 pm
ファンデルワールス半径 216 pm
その他
結晶構造 面心立方格子構造
磁性 反磁性[2]
熱伝導率 (300 K) 5.65×10-3 W/(m⋅K)
音の伝わる速さ (液体)1090 m/s、(気体)169 m/s
CAS登録番号 7440-63-3
主な同位体
詳細はキセノンの同位体を参照
同位体 NA 半減期 DM DE (MeV) DP
(124)Xe 0.095% 1.8×1022 y εε 0.825 124Te
(125)Xe syn 16.9 h ε 1.652 (125)I
(126)Xe 0.089% 中性子72個で安定
(127)Xe syn 36.345 d ε 0.662 (127)I
(128)Xe 1.91% 中性子74個で安定
(129)Xe 26.4% 中性子75個で安定
(130)Xe 4.07% 中性子76個で安定
(131)Xe 21.2% 中性子77個で安定
(132)Xe 26.9% 中性子78個で安定
133Xe syn 5.247 d β- 0.427 133Cs
134Xe 10.4% >1.1×1016 y β-β- 2.864 134Ba
135Xe syn 9.14 h β- 1.16 135Cs
(136)Xe 8.86% 2.11×1020 y β-β- 2.4578 136Ba

常温常圧では無色無臭の気体融点-111.9 °C沸点-108.1 °C。空気中にもごく僅かに(約0.087 ppm)含まれる。固体では安定な面心立方構造をとる。

一般に貴ガスは最外殻電子が閉殻構造をとるため、反応性はほとんど見られない。しかし、キセノンの最外殻 (5s25p6) は原子核からの距離が離れているため、他の電子による遮蔽効果によって束縛が弱まっており、比較的イオン化しやすい(イオン化エネルギーが他の貴ガス元素に比べて相対的に低い)。このため、反応性の強いフッ素酸素と反応して、フッ化物酸化物を形成する。

名称

ギリシャ語で「奇妙な」「なじみにくいもの」を意味する ξένος (xenos) の中性単数形の ξένον (xenon) が語源。英語圏ではゼノン (/ˈzɛnɒn//ˈziːnɒn/) と発音されることが多い。

用途

キセノンランプに封入されたり、イオン推進エンジンの推進剤に使用される。また断熱性能が空気よりも高いため、複層ガラスに封入する断熱材としても有効である。

医療

麻酔作用を有する事が1946年に報告された以降に研究が始まり、2005年にはドイツで臨床許可が出された[4]。麻酔薬としては、理想的な性質(「導入・覚醒が早い」、「鎮痛作用を持つ」「術中の循環動態が安定する」、「脳保護作用を持つ」、「術後認知機能障害を予防できる可能性がある」)などと報告されている。20〜50%程度の酸素を混合した混合ガスが一部病院では試験的に導入された[5]。ただし純粋なキセノン自体が高価なことや術後悪心嘔吐の副作用もあり、一般には普及しなかった[6]。しかも、麻酔の際には閉鎖循環式回路での使用が必要で特段の利点もないとの指摘もある(一般の全身麻酔に用いられる回路は半閉鎖式回路である)[6]

素粒子物理学

暗黒物質(ダークマター)の直接検出を目論んでいるXMASS検出器では、暗黒物質を検出するために-100 °Cの液体キセノンで満たしたセンサーが用いられる。これは暗黒物質がキセノン原子核と衝突して放つシンチレーション光を光電子増倍管で捕捉する仕組みで、東京大学の神岡宇宙素粒子研究施設で2011年春から稼動予定であった[7][8]が、2010年からの試運転の結果、検出器を構成する素材が予想外に多くのバックグランドを含んでいることが判明、そのバックグランドを減らす改修が行われ2013年11月に再運転し[9][10]観測が行われている。

生産・精製

空気中からの単独精製は行われることはない。液体酸素液体窒素・液化アルゴンを生産するために大型空気分離装置における断熱膨張ジュール=トムソン効果)により、液化した空気からの分留残(副産物)から回収精製される[11]

化合物

化学結合を備えた最初の貴ガス化合物として、1962年5月、カナダブリティッシュコロンビア大学のネイル・バートレットとD.H.ローマンによってヘキサフルオロ白金酸キセノン (XePtF6) が合成された[12]。酸素分子 O2 を酸化するヘキサフルオロ白金酸の反応から類推し、O2 (12.2 eV) とほぼ同じイオン化エネルギーを持つキセノン (12.13 eV) を酸化できるのではと考えたことが成功の鍵であった。8月には XeF4 が、同年末は XeF2 と XeF62011年には XeO2 も合成された。

ハロゲン化物

キセノンはフッ素単体の混合比を調節してニッケル管中で加熱し、急冷すると四フッ化キセノン XeF4 あるいは二フッ化キセノン XeF2 を生成し、加圧条件下で同様に加熱すると六フッ化キセノン XeF6 を与える。

いずれのフッ化物も水に容易に加水分解される。XeF6、XeF4 は強力なフッ素化剤である。XeF4ベンゼンなどの芳香族化合物の水素をフッ素化することができ、XeF6 に至っては石英とさえ反応し SiF4 を与える。また、XeF2 は温和なフッ素化試剤として利用される。

酸化物

六フッ化キセノン XeF6 または四フッ化キセノン XeF4と反応し、三酸化キセノン XeO3 を与える。[13]

 

XeO3 は三角錐型の構造を持ち、爆発性の化合物である。XeO3 はアルカリ条件下、XeVIII と Xe0 に不均化する。

 

また、反応性の高い XeF6石英 SiO2 と反応させると四フッ化酸化キセノン XeOF4 を生成する。

他の例として、XeO3 と XeOF4 から XeO2F2 が、XeF6 と NaXeO6 から XeO3F2 が生成する。低温で水と混合し、紫外線を照射するとキセノン2原子を含む分子 HXeOXeH が生成する[14]

有機キセノン化合物

C6F5BF2 と XeF4ジクロロメタン中で混合することにより、[C6F5XeF2]+[BF4]- が合成されている[15]

同位体

同位体
  • 131mXe は、半減期約2日で 131I のベータ崩壊により生成され[16]、ベータ線を放出し 131Xe になる。
  • 133Xe は、半減期約5.2日でベータ崩壊し安定同位体の 133Cs になる。
    • 地下核実験では時間が経つにつれて大気中にキセノン133が放出されるので実験の成功・失敗の判断の一部にキセノン133の大気中への放出を調べることがある。
  • 134Xe は、134Cs の崩壊により生成された (134Ba) が軌道電子を捕獲し生成される。
  • 135Xe は、ウラン核分裂により生成する。

参考文献

[脚注の使い方]
  1. ^ Lide, David R. (2004). “Section 4, Properties of the Elements and Inorganic Compounds; Melting, boiling, triple, and critical temperatures of the elements”. CRC Handbook of Chemistry and Physics (85th edition ed.). Boca Raton, Florida: CRC Press. ISBN (0849304857) 
  2. ^ , in Handbook of Chemistry and Physics 81st edition, CRC press.
  3. ^ (桜井弘)『元素111の新知識』講談社、1998年、245頁。ISBN (4-06-257192-7)。 
  4. ^ 水原敬洋、後藤隆久、「キセノン麻酔について-利点,欠点,将来の展望-」日本臨床麻酔学会誌 Vol.33 (2013) No.5 p.736-741, doi:10.2199/jjsca.33.736
  5. ^ 後藤隆久、 (PDF)
  6. ^ a b “”. www.med.teikyo-u.ac.jp. 2023年3月20日時点のオリジナルよりアーカイブ。2023年3月20日閲覧。
  7. ^ XMASS実験
  8. ^ http://www.yomiuri.co.jp/space/news/20100212-OYT1T00164.htm
  9. ^ XMASS実験装置の改修 東京大学宇宙線研究所 2014年6月26日
  10. ^ XMASS-I full volume - 極低バックグラウンド素粒子原子核研究懇談会 (PDF)
  11. ^ レアガス(Ne・Kr・Xe) エア・ウォーター
  12. ^ N. Bartlett, Proc. Chem. Soc. 1962, 218.
  13. ^ https://chemiday.com/en/reaction/3-1-0-13338
  14. ^ Leonid Khriachtchev et al., "A Small Neutral Molecule with Two Noble-Gas Atoms: HXeOXeH", J. Am. Chem. Soc., 130 (19), 6114–6118, 2008. doi:10.1021/ja077835v
  15. ^ H.-J. Frohn et al., Angew. Chem. Int. Ed., 39, 391 (2000)
  16. ^ ヨウ素-131 原子力資料情報室 (CNIC)

関連項目

外部リンク

ウィキペディア、ウィキ、本、library、論文、読んだ、ダウンロード、自由、無料ダウンロード、mp3、video、mp4、3gp、 jpg、jpeg、gif、png、画像、音楽、歌、映画、本、ゲーム、ゲーム。