» www.Giftbox.Az - Bir birindən gözəl hədiyyə satışı
ウィキペディアランダム
毎日カテゴリ
共有: WhatsappFacebookTwitterVK

HEATリピート

HEATリピート(ひーとりぴーと:HEAT repeats)は、多くのタンパク質に見られるリピート配列(構造)のひとつ[2]。ひとつのユニットは、30-40アミノ酸残基からなり、2本の両親媒性ヘリックスが折り畳まれた構造をつくる。このユニットが数十回繰り返されると、弾力性に富むソレノイド状構造を形成する[3][4][5]

ヒートリピート
インポーチンβとインポーチンα IBBドメインの複合体の構造[1]
識別子
略号 HEAT
Pfam PF03810
Pfam clan CL0020
InterPro IPR001494
SMART SM000913
PROSITE PS50166
SCOP 1QGK
SUPERFAMILY 1QGK
利用可能な蛋白質構造:
Pfam structures
PDB RCSB PDB; PDBe; PDBj
(PDBsum) structure summary
PDB 1QGK
(テンプレートを表示)

HEATリピートの名前の由来

HEATの名前は、このリピート配列を共有する代表的な4つのタンパク質の頭文字に由来する:Huntingtin (ハンチントン病の責任タンパク質ハンチンチン), Elongation factor 3 (EF3)(タンパク質合成伸長因子), Protein phosphatase 2A (PP2A) A subunit(プロテインホスファターゼ2AのAサブユニット) , TOR1 (target of rapamycin)(シグナル伝達に関わるタンパク質キナーゼ[6]

様々なHEATタンパク質とその構造

HEATリピートタンパク質の代表例として知られているものには、核-細胞質間輸送因子インポーチンβ (karyopherin βとも呼ばれる) ファミリー[7]コンデンシンコヒーシンの制御サブユニット[8]セパレース[9]ATM (Ataxia telangiectasia mutated) やATR (Ataxia telangiectasia and Rad3 related)を含むPIKKs (phosphatidylinositol 3-kinase-related protein kinases)[10][11]微小管結合タンパク質XMAP215/Dis1/TOG[12]とCLASP[13]などがある。このようにHEATリピートをもつタンパク質の細胞内機能は多彩である。

これまでに、構造が解かれているHEATリピートタンパク質には以下のものがある。

  • 転写制御
    • 基本転写因子TFIIDのTAF6サブユニット[26]
    • TBP制御因子Mot1(Modifier of transcription 1)[27]
    • 転写開始因子Rrn3[28]
  • DNA修復
  • 細胞増殖制御
    • TOR (target of rapamycin)[60]
  • その他
    • API5 (Apoptosis inhibitor 5)[61]
    • V型ATPaseのHサブユニット[62]
    • 全身性エリテマトーデスの免疫応答の自己抗原Ro[63]
    • 細胞質ポリアデニル複合体symplekin[64]
    • 癌抑制遺伝子Tsc1[65]
    • COP9シグナロソームのサブユニット7(CSN7)[66]
    • PI4キナーゼStt4複合体のサブユニットEFR3[67]
    • レンズ上皮由来増殖因子LEDGFのIBD (HIV-1 integrase binding domain)[68]

類似の構造をもつリピート配列

HEATリピートと類似の構造をもつリピート配列として、アルマジロリピート(Armadillo [ARM] repeat)[69]、やPUFリピート(Pumilio/fem-3 mRNA binding factor [PUF] repeat[70][71])がある。

引用文献

[脚注の使い方]
  1. ^ a b Cingolani G, Petosa C, Weis K, Müller CW (1999). “Structure of importin-beta bound to the IBB domain of importin-alpha”. Nature 399 (6733): 221-229. PMID (10353244). 
  2. ^ Yoshimura SH, Hirano T (2016). “HEAT repeats - versatile arrays of amphiphilic helices working in crowded environments?”. J. Cell Sci. 129 (21): 3963-3970. PMID (27802131). 
  3. ^ Grinthal A, Adamovic I, Weiner B, Karplus M, Kleckner N (2010). “PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis”. Proc. Natl. Acad. Sci. USA. 107 (6): 2467-2472. PMID (20133745). 
  4. ^ Kappel C, Zachariae U, Dölker N, Grubmüller H (2010). “An unusual hydrophobic core confers extreme flexibility to HEAT repeat proteins”. Biophys. J. 99 (5): 1596-1603. PMID (20816072). 
  5. ^ Yoshimura SH, Kumeta M, Takeyasu K (2014). “Structural mechanism of nuclear transport mediated by importin β and flexible amphiphilic proteins”. Structure 22 (12): 1699-1710. PMID (25435324). 
  6. ^ Andrade MA, Bork P (1995). “HEAT repeats in the Huntington's disease protein”. Nat. Genet. 11 (2): 115-116. PMID (7550332). 
  7. ^ Malik HS, Eickbush TH, Goldfarb DS (1997). “Evolutionary specialization of the nuclear targeting apparatus”. Proc. Natl. Acad. Sci. USA. 94 (25): 13738-13742. PMID (9391096). 
  8. ^ Neuwald AF, Hirano T (2000). “HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions”. Genome Res. 10 (10): 1445-52. PMID (11042144). 
  9. ^ Jäger H, Herzig B, Herzig A, Sticht H, Lehner CF, Heidmann S (2004). “Structure predictions and interaction studies indicate homology of separase N-terminal regulatory domains and Drosophila THR”. Cell Cycle 3 (3): 182-188. PMID (14712087). 
  10. ^ Perry J, Kleckner N (2003). “The ATRs, ATMs, and TORs are giant HEAT repeat proteins”. Cell 112 (2): 151-155. PMID (12553904). 
  11. ^ Baretić D, Williams RL (2014). “PIKKs--the solenoid nest where partners and kinases meet”. Curr. Opin. Struct. Biol. 29: 134-142. PMID (25460276). 
  12. ^ Ohkura H, Garcia MA, Toda T (2001). “Dis1/TOG universal microtubule adaptors - one MAP for all?”. J. Cell Sci. 114 (Pt 21): 3805-3812. PMID (11719547). 
  13. ^ Al-Bassam J, Kim H, Brouhard G, van Oijen A, Harrison SC, Chang F (2010). “CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule”. Dev. Cell 19 (2): 245-258. PMID (20708587). 
  14. ^ Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D (1999). “The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs”. Cell 96 (1): 99-110. PMID (9989501). 
  15. ^ Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S, Jeffrey PD, Shi Y (2006). “Structure of the protein phosphatase 2A holoenzyme”. Cell 127 (6): 1239-1251. PMID (17174897). 
  16. ^ Cho US, Xu W (2007). “Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme”. Nature 445 (7123): 53-57. PMID (17086192). 
  17. ^ Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N (2004). “Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases”. Cell 119 (4): 517-528. PMID (15537541). 
  18. ^ Takagi K, Kim S, Yukii H, Ueno M, Morishita R, Endo Y, Kato K, Tanaka K, Saeki Y, Mizushima T (2012). “Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26 S proteasome, by proteasome-dedicated chaperone Hsm3p”. J. Biol. Chem. 287 (15): 12172-12182. PMID (22334676). 
  19. ^ Chook YM, Blobel G (1999). “Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp”. Nature 399 (6733): 230-237. PMID (10353245). 
  20. ^ Bayliss R, Littlewood T, Stewart M (2000). “Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking”. Cell 102 (1): 99-108. PMID (10929717). 
  21. ^ Matsuura Y, Stewart M (2004). “Structural basis for the assembly of a nuclear export complex”. Nature 432 (7019): 872-877. PMID (15602554). 
  22. ^ Imasaki T, Shimizu T, Hashimoto H, Hidaka Y, Kose S, Imamoto N, Yamada M, Sato M (2007). “Structural basis for substrate recognition and dissociation by human transportin 1”. Mol. Cell 28 (1): 57-67. PMID (17936704). 
  23. ^ Montpetit B, Thomsen ND, Helmke KJ, Seeliger MA, Berger JM, Weis K (2011). “A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export”. Nature 472 (7342): 238-242. PMID (21441902). 
  24. ^ Andersen KR, Onischenko E, Tang JH, Kumar P, Chen JZ, Ulrich A, Liphardt JT, Weis K, Schwartz TU (2013). “Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors”. eLife 11 (2): e00745. PMID (23795296). 
  25. ^ Stuwe T, Lin DH, Collins LN, Hurt E, Hoelz A (2014). “Evidence for an evolutionary relationship between the large adaptor nucleoporin Nup192 and karyopherins”. Proc. Natl. Add. Sci. 111 (7): 2530-2535. PMID (24505056). 
  26. ^ Scheer E, Delbac F, Tora L, Moras D, Romier C (2012). “TFIID TAF6-TAF9 complex formation involves the HEAT repeat-containing C-terminal domain of TAF6 and is modulated by TAF5 protein”. J. Biol. Chem. 287 (33): 27580-27592. PMID (22696218). 
  27. ^ Wollmann P, Cui S, Viswanathan R, Berninghausen O, Wells MN, Moldt M, Witte G, Butryn A, Wendler P, Beckmann R, Auble DT, Hopfner KP (2011). “Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP”. Nature 475 (7356): 403-407. PMID (21734658). 
  28. ^ Blattner C, Jennebach S, Herzog F, Mayer A, Cheung AC, Witte G, Lorenzen K, Hopfner KP, Heck AJ, Aebersold R, Cramer P (2011). “Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth”. Genes Dev. 25 (19): 2093-2105. PMID (21940764). 
  29. ^ Andersen CB, Becker T, Blau M, Anand M, Halic M, Balar B, Mielke T, Boesen T, Pedersen JS, Spahn CM, Kinzy TG, Andersen GR, Beckmann R (2006). “Structure of eEF3 and the mechanism of transfer RNA release from the E-site”. Nature 443 (7112): 663-668. PMID (16929303). 
  30. ^ Marcotrigiano J, Lomakin IB, Sonenberg N, Pestova TV, Hellen CU, Burley SK (2001). “A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery”. Moll. Cell 7 (1): 193-203. PMID (11172724). 
  31. ^ Nozawa K, Ishitani R, Yoshihisa T, Sato M, Arisaka F, Kanamaru S, Dohmae N, Mangroo D, Senger B, Becker HD, Nureki O (2013). “Crystal structure of Cex1p reveals the mechanism of tRNA trafficking between nucleus and cytoplasm”. Nucleic Acids Res. 41 (6): 3901-3914. PMID (23396276). 
  32. ^ Sibanda BL, Chirgadze DY, Blundell TL (2010). “Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats”. Nature 463 (7277): 118-121. PMID (20023628). 
  33. ^ Chaplin AK, Hardwick SW, Liang S, Stavridi AK, Hnizda A, Cooper LR, De Oliveira TM, Chirgadze DY, Blundell TL (2021). “Dimers of DNA-PK create a stage for DNA double-strand break repair”. Nat Struct Mol Biol. PMID (33077952). 
  34. ^ Chen X, Xu X, Chen Y, Cheung JC, Wang H, Jiang J, de Val N, Fox T, Gellert M, Yang W (2021). “Structure of an activated DNA-PK and its implications for NHEJ”. Mol Cell 81 (4): 801-810.e3. PMID (33385326). 
  35. ^ Kowal P, Gurtan AM, Stuckert P, D'Andrea AD, Ellenberger T (2007). “Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex”. J. Biol. Chem. 282 (3): 2047-2055. PMID (17082180). 
  36. ^ Rubinson EH, Gowda AS, Spratt TE, Gold B, Eichman BF (2010). “An unprecedented nucleic acid capture mechanism for excision of DNA damage”. Nature 468 (7322): 406-411. PMID (20927102). 
  37. ^ Takai H, Xie Y, de Lange T, Pavletich NP (2010). “Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes”. Genes Dev. 24 (18): 2019-2030. PMID (20801936). 
  38. ^ Hara K, Zheng G, Qu Q, Liu H, Ouyang Z, Chen Z, Tomchick DR, Yu H (2014). “Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion”. Nat. Struct. Mol. Biol. 21 (10): 864-870. PMID (25173175). 
  39. ^ Roig MB, Löwe J, Chan KL, Beckouët F, Metson J, Nasmyth K (2014). “Structure and function of cohesin's Scc3/SA regulatory subunit.”. FEBS Lett 588 (20): 3692-3702. PMID (25171859). 
  40. ^ Li Y, Muir K, Bowler MW, Metz J, Haering CH, Panne D (2018). “Structural basis for Scc3-dependent cohesin recruitment to chromatin.”. eLife 7: e38356. doi: 10.7554/eLife.38356. PMID (30109982). 
  41. ^ a b Kikuchi S, Borek DM, Otwinowski Z, Tomchick DR, Yu H (2016). “Crystal structure of the cohesin loader Scc2 and insight into cohesinopathy”. Proc Natl Acad Sci USA 113 (44): 12444-12449. PMID (27791135). 
  42. ^ a b Chao WC, Murayama Y, Muñoz S, Jones AW, Wade BO, Purkiss AG, Hu XW, Borg A, Snijders AP, Uhlmann F, Singleton MR (2017). “Structure of the cohesin loader Scc2”. Nat Commun 8: 13952. PMID (28059076). 
  43. ^ Shi Z, Gao H, Bai XC, Yu H (2020). “Cryo-EM structure of the human cohesin-NIPBL-DNA complex”. Science: eabb0981. PMID (32409525). 
  44. ^ Higashi TL, Eickhoff P, Sousa JS, Locke J, Nans A, Flynn HR, Snijders AP, Papageorgiou G, O'Reilly N, Chen ZA, O'Reilly FJ, Rappsilber J, Costa A, Uhlmann F (2020). “A Structure-Based Mechanism for DNA Entry into the Cohesin Ring”. Mol Cell 79 (6): 917-933. PMID (32755595). 
  45. ^ Chatterjee A, Zakian S, Hu XW, Singleton MR (2013). “Structural insights into the regulation of cohesion establishment by Wpl1”. EMBO J. 32 (5): 677-687. PMID (23395900). 
  46. ^ Ouyang Z, Zheng G, Song J, Borek DM, Otwinowski Z, Brautigam CA, Tomchick DR, Rankin S, Yu H (2013). “Structure of the human cohesin inhibitor Wapl”. Proc. Natl. Acad. Sci. USA 110 (28): 11355-11360. PMID (23776203). 
  47. ^ Muir KW, Kschonsak M, Li Y, Metz J, Haering CH, Panne D. (2016). “Structure of the Pds5-Scc1 complex and implications for cohesin function”. Cell Rep. PMID (26923589). 
  48. ^ Lee BG, Roig MB, Jansma M, Petela N, Metson J, Nasmyth K, Löwe J (2016). “Crystal structure of the cohesin gatekeeper Pds5 and in complex with kleisin Scc1”. Cell Rep. PMID (26923598). 
  49. ^ Ouyang Z, Zheng G, Tomchick DR, Luo X, Yu H. (2016). “Structural basis and IP6 requirement for Pds5-dependent cohesin dynamics”. Mol Cell 62 (2): 248-259. PMID (26971492). 
  50. ^ Bachmann G, Richards MW, Winter A, Beuron F, Morris E, Bayliss R (2016). “A closed conformation of the Caenorhabditis elegans separase-securin complex”. Open Biol 6 (4): 160032. doi: 10.1098/rsob.160032. PMID (27249343). 
  51. ^ Luo S, Tong L (2017). “Molecular mechanism for the regulation of yeast separase by securin”. Nature 542 (7640): 255-259. PMID (28146474). 
  52. ^ Boland A, Martin TG, Zhang Z, Yang J, Bai XC, Chang L, Scheres SH, Barford D (2017). “Cryo-EM structure of a metazoan separase-securin complex at near-atomic resolution”. Nat Struct Mol Biol 24 (4): 414-418. PMID (28263324). 
  53. ^ Kschonsak M, Merkel F, Bisht S, Metz J, Rybin V, Hassler M, Haering CH (2017). “Structural basis for a safety-belt mechanism that anchors condensin to chromosomes”. Cell 171 (3): 588-600.e24. PMID (28988770). 
  54. ^ Hara K, Kinoshita K, Migita T, Murakami K, Shimizu K, Takeuchi K, Hirano T, Hashimoto H (2019). “Structural basis of HEAT-kleisin interactions in the human condensin I subcomplex”. EMBO Rep: pii: e47183. doi: 10.15252/embr.201847183. PMID (30858338). 
  55. ^ Hassler M, Shaltiel IA, Kschonsak M, Simon B, Merkel F, Thärichen L, Bailey HJ, Macošek J, Bravo S, Metz J, Hennig J, Haering CH (2019). “Structural basis of an asymmetric condensin ATPase cycle”. Mol Cell 74 (6): 1175-1188.e24. PMID (31226277). 
  56. ^ Shaltiel IA, Datta S, Lecomte L, Hassler M, Kschonsak M, Bravo S, Stober C, Ormanns J, Eustermann S, Haering CH. (2022). “A hold-and-feed mechanism drives directional DNA loop extrusion by condensin”. Science 376 (6597): 1087-1094. PMID (35653469). 
  57. ^ Al-Bassam J, Larsen NA, Hyman AA, Harrison SC (2007). “Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding.”. Structure 15 (3): 355-362. PMID (17355870). 
  58. ^ Slep KC, Vale RD. (2007). “Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1”. Mol. Cell 27 (6): 976-991. PMID (17889670). 
  59. ^ Ayaz P, Ye X, Huddleston P, Brautigam CA, Rice LM. (2012). “A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase.”. Science 337 (6096): 3731-3736. PMID (22904013). 
  60. ^ Aylett CH, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N, Maier T (2016). “Architecture of human mTOR complex 1”. Science 351 (6268): 48-52. PMID (26678875). 
  61. ^ Han BG, Kim KH, Lee SJ, Jeong KC, Cho JW, Noh KH, Kim TW, Kim SJ, Yoon HJ, Suh SW, Lee S, Lee BI (2012). “Helical repeat structure of apoptosis inhibitor 5 reveals protein-protein interaction modules”. J. Biol. Chem. 287 (14): 10727-10737. PMID (22334682). 
  62. ^ Sagermann M, Stevens TH, Matthews BW (2001). “Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae”. Proc. Natl. Acad. Sci. USA. 98 (13): 7134-7139. PMID (11416198). 
  63. ^ Stein AJ, Fuchs G, Fu C, Wolin SL, Reinisch KM. (2005). “Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity”. Cell 121 (4): 529-539. PMID (15907467). 
  64. ^ Xiang K, Nagaike T, Xiang S, Kilic T, Beh MM, Manley JL, Tong L (2010). “Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex”. Nature 467 (7316): 729-733. PMID (20861839). 
  65. ^ Sun W, Zhu YJ, Wang Z, Zhong Q, Gao F, Lou J, Gong W, Xu W (2013). “Crystal structure of the yeast TSC1 core domain and implications for tuberous sclerosis pathological mutations”. Nat. Commun. 4: 2135. PMID (23857276). 
  66. ^ Dessau M, Halimi Y, Erez T, Chomsky-Hecht O, Chamovitz DA, Hirsch JA (2008). “The Arabidopsis COP9 signalosome subunit 7 is a model PCI domain protein with subdomains involved in COP9 signalosome assembly”. Plant Cell 20 (10): 2815-2834. PMID (18854373). 
  67. ^ Wu X, Chi RJ, Baskin JM, Lucast L, Burd CG, De Camilli P, Reinisch KM (2014). “Structural insights into assembly and regulation of the plasma membrane phosphatidylinositol 4-kinase complex”. Dev. Cell 28 (1): 19-29. PMID (24360784). 
  68. ^ Cherepanov P, Sun ZY, Rahman S, Maertens G, Wagner G, Engelman A (2005). “Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75”. Nat. Struct. Mol. Biol. 12 (6): 526-532. PMID (15895093). 
  69. ^ Andrade MA, Petosa C, O'Donoghue SI, Müller CW, Bork P. (2001). “Comparison of ARM and HEAT protein repeats”. J. Mol. Biol. 309 (1): 1-18. PMID (11491282). 
  70. ^ Edwards TA, Pyle SE, Wharton RP, Aggarwal AK (2001). “Structure of Pumilio reveals similarity between RNA and peptide binding motifs”. Cell 105 (2): 281-289. PMID (11336677). 
  71. ^ Rubinson EH, Eichman BF (2012). “Nucleic acid recognition by tandem helical repeats”. Curr Opin Struct Biol 22 (1): 101-109. PMID (22154606). 

 

ウィキペディア、ウィキ、本、library、論文、読んだ、ダウンロード、自由、無料ダウンロード、mp3、video、mp4、3gp、 jpg、jpeg、gif、png、画像、音楽、歌、映画、本、ゲーム、ゲーム。