fbpx
ウィキペディア

物理学

物理学
ウィキポータル 物理学
執筆依頼・加筆依頼
Category:物理学
ウィキプロジェクト 物理学

物理学ぶつりがく: physics)は、自然科学の一分野である。

概論

古代ギリシア自然学φύσις[1]にその源があり、英語の「physics」という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。19世紀から、物理現象のみを追求する「physics」として自然哲学から独立した意味を持つようになった。

物理学の古典的な研究分野は、物体運動色彩音響電気磁気波動天体の諸現象(物理現象)である。化学生物学地学などほかの自然科学に比べ数学との親和性が非常に強い。

物理現象の微視的視点と巨視的視点

材料力学や流体力学は巨視的現象の法則からなる独立した物理学上の理論体系である。ここで注意しなければならないのは材料力学や流体力学はそれらの適用範囲においては、他の理論から完全に閉じた理論体系として存在していることである。 現代の物理学は、たとえば素粒子論がある一方で熱力学があるように、巨視的現象の理論と微視的現象を記述する力学とをつなぐ理論や現象も、重要なテーマとして研究されている。一般的にこの分野では統計物理学と呼ばれる強力な手法が使われる。ルートヴィッヒ・ボルツマンらによって開発されたこの手法は、構成粒子の振る舞いを統計的に処理することによって、巨視的現象と結びつけるものである。[要出典]

物理学と数学

 
物理学にとって数学は欠くことのできない道具である。自然現象を数式によって定量的に記述していくことは、物理学における基本的な方法論のひとつであり、どんな教科書にも方程式が、特に微分方程式が、よく登場する。この写真は物理学の教科書の一例で、熱・統計力学に関する本。

物理学では、理論モデル数式として表現することが多い。「これは、自然言語で記述するとどうしても厳密さに欠け、定量的な評価や複雑な推論をすることが難しいためである[要出典]数学は非常に強力な記号操作体系であるため、推論を一連の計算として実行することが可能なことと、複雑なモデルを正確・簡潔に表現することに適している。[誰?]

物理学の研究において最も重要なステップの一つは、物理法則を数式に表現する前の段階、観測された事実の中から記述すべき基本的な要素を抽出する行為である[要出典]電磁気学に貢献したマイケル・ファラデーが正規の教育を受けなかったため、数学的知識がなかったにもかかわらず、さまざまな発見を成し遂げたことや、ノーベル賞を受賞したリチャード・P・ファインマン液体ヘリウムについて論じた論文やジョージ・ガモフが初めてビッグバン理論を提唱した論文には数式が出てこないことは、自然界の中に記述すべき対象を見つけ出す営みが物理学において重要なステップであるということを示している[要出典]

物理学の発展と拡張

物理学の歴史は一見異なる現象を、同一の法則の異なる側面であるとして、統一的に説明していく歴史でもあった[要出典](物理学の歴史そのものについては後述)。

地上付近での物体の落下との運動を同じ万有引力によるものとしたニュートンの重力の理論は、それまであった惑星の運動に関するケプラーの法則や、ガリレイの落体運動の法則が万有引力の別の側面であることを示した。ジェームズ・クラーク・マクスウェルは、それまでアンドレ=マリ・アンペールマイケル・ファラデーらが個別に発見していた電気と磁気の法則が、電磁気という一つの法則にまとめられることを導き、電磁波の存在を理論的に予言し、電磁波の一種であることを示した。

20世紀に入るとアルベルト・アインシュタイン相対性理論によって、時間と空間に関する認識を一変させた。彼はさらに重力と電磁気力に関する統一場理論の研究に取り組んだが実現しなかった。しかし、その後も統一場理論に関する研究は他の研究者たちによって続けられ、新しく発見された核力も含めて統一しようとする努力が続けられた。1967年頃電磁気力弱い力に関する統一場理論(ワインバーグ・サラム理論)が提唱され、後の実験的な検証により理論の正当性が確立した。この理論により、電磁気力と弱い力は同じ力の異なる側面として説明されることになった。

自然界に存在する重力電磁気力強い力弱い力の四つの相互作用のうち、上記の電弱統一理論を超えて、電磁気力、強い力、弱い力に関する統一場理論である大統一理論、重力、電磁気力、強い力、弱い力の四つの相互作用全てに関する統一場理論(例えば、超弦理論が候補)が研究されているが、実験的に検証されておらず、現在においても確立には至っていない(しばしば、上記の四つの相互作用に関する統一場理論は、既存の物理現象がその理論一つを基礎として理解できると考えられるため、万物の理論と呼ばれることがある)。

古典的な物理学では、物理現象が発生する空間時間は、物理現象そのものとは別々のものと考えられてきたが、重力の理論(一般相対性理論)によって、物質の存在が空間と時間に影響を与えること、物質とエネルギーが等価であることが解明されたことから、現代物理学では、物理現象に時間と空間、物質とエネルギーを含める。

他分野との親和性

物理学はほかの自然科学と密接に関係している。物理学で得られた知見が非常に強力なために、他の自然科学の分野の問題の解決に寄与することも多く、生物学医学など他の分野との連携も進んでいる。特に化学においては密接に関連する分野が多く、特に物理学的な手法を用いる分野として物理化学という分野が設けられている。生物学においても、生物の骨格や筋肉を力学的に考察したり、遺伝子レベルでの解析や進化の物理的考察を行う分子生物学がある。地球科学においても地球を物理的な手法を用いて研究する地球物理学があり、地震学気象学海洋物理学地球電磁気学等は地球物理学の代表的な分野であるといえる。

今日の物理学は自然科学のみならず人文科学社会科学とも関係している。人文科学においては哲学との学際領域に自然哲学がある。また、心理学精神物理学を通じて物理学と関係している。社会科学においては中学校高等学校における教科としての物理は教育学と密接に関係しており、経済現象を物理的に解明する経済物理学経済学との学際的分野であるといえる。

物理学の概略史

古代

 
プトレマイオスの天動説

天動説の作成などの天文学が最古の物理学である。初期文明であるシュメール人、古代エジプト人、インダス文明などは太陽や月などの天体を観察した。これらの天体は宗教的に崇拝され、現代からすれば非科学的な現象の説明もされたが、これがのちの天文学や物理学へと成長する[2]

16世紀以前のヨーロッパにおいて科学は、キリスト教的な要素を含んだアリストテレス自然哲学が主流であった[3]。アリストテレスは物質の振る舞いを「目的論」(もしくは「目的因」)によって説明し、例えば天体地球の周りを回るのは回転しようとする目的があるためだとした[3]。自然哲学は観測よりも哲学を重視したため、試行的な試験で事象を説明する現代科学とは性質が異なる。また、この時既に数学は中東やエジプトなどで発達していたが、自然哲学的な物理に使われることはなかった[4]

しかし古代ギリシアにおいて実証的な考え方がされていなかったわけではなく、紀元前3世紀のアルキメデスは自然哲学では無視されていた数学を自然と結びつけ、数学や物理に数々の貢献をした。続くヒッパルコスプトレマイオスなども幾何学や天文学を発達させた[4]。また、アリストテレスの時代より前の紀元前5世紀にはすでにレウキッポスデモクリトスなどがそれまでの超自然的説明を否定して自然現象には原因となる理論があるとして原子の存在などを考えていた[4]

中世

中世イスラームの学者は、他のギリシャ文化と共にアリストテレスの物理学を継承した。その黄金期には観察と先験的な推論に重点を置いた初期の科学的方法を発展させた。最も注目すべきは、イブン・サール、アル・キンディーイブン・アル・ハイサム、アル・ファリス、アビセナ等による視覚と視力の分野である。アル・ハイサムが書いた「光学の本(Kitābal-Manāẓir)」は視覚に関する古代ギリシャの考え方を最初に反証したばかりでなく、新しい理論を作り出した。この本では史上初、ピンホールカメラの現象を研究することで、目自体の仕組みをさらに詳しく調べた。解剖学と既存の知識を使って、どのように光が目に入り、焦点が合い、目の後ろに投影されるかを説明したのである。さらに、現代の写真撮影の開発から数百年前に、既にカメラ・オブスクラを発明した[5]

全7冊の「光学の本(Kitab al-Manathir)」は、600年以上にわたって、東洋と西洋の中世の芸術における視覚の理論から、視点の性質への学問全体の考え方に大きな影響を与えた。 ロバート・グロステストレオナルド・ダ・ヴィンチから、ルネ・デカルトヨハネス・ケプラーアイザック・ニュートンまで、後世の多くのヨーロッパの学者や思想家が影響を受けている。

近代科学

 
『自然哲学の数学的諸原理』と「ニュートンのゆりかご

近世に入り、科学的研究法の発展の中で実験による理論検証の重要性が認識され始めた。16世紀後半、ガリレオ・ガリレイは力学現象の研究を行い、落体の法則慣性の法則を見出した[6]1687年アイザック・ニュートンは『自然哲学の数学的諸原理』を出版した[7]。ニュートンの示した理論は、ガリレイらの発見した法則を一般化し、包括的な説明を与えることに成功した。ニュートンの理論の中で最も基礎的な法則として、運動の法則万有引力の法則が挙げられる。これらの法則は、天体の運行などの観測結果をよく説明することができた。ニュートン自身は力学法則を幾何学を用いて記述したが、オイラーなど後世の研究者によってそれらの理論は代数学的に記述されるようになった。ジョゼフ=ルイ・ラグランジュウィリアム・ローワン・ハミルトンらは古典力学を徹底的に拡張し、新しい定式化、原理、結果を導いた[8]。重力の法則によって宇宙物理学の分野が起こされた。宇宙物理学は物理理論をもちいて天体現象を記述する。

18世紀から、ロバート・ボイルトマス・ヤングら大勢の学者によって熱力学が発展した。1733年に、ダニエル・ベルヌーイが熱力学的な結果を導くために古典力学とともに統計論を用いた。これが統計力学の起こりである。1798年に、ランフォードは力学的仕事が熱に変換されることを示した[9]。1820年代にはサディ・カルノーカルノーサイクルによる熱力学の研究を行い[10]、1840年代に、ジェームズ・プレスコット・ジュールは力学的エネルギーを含めた熱についてのエネルギーの保存則を証明した[11]。1850年にはルドルフ・クラウジウス熱力学第一法則および熱力学第二法則を定式化した[12]

電磁気学の発達

 
マクスウェルの方程式

電気と磁気の挙動はマイケル・ファラデーゲオルク・オームらによって研究された。ジェームズ・クラーク・マクスウェル1855年から1864年までに発表した3つの論文で、マクスウェルの方程式で記述される電磁気学という単一理論で二つの現象を統一的に説明した[13]。この理論によって電磁波であると予言された[13]。この予言は後にハインリヒ・ヘルツによって実証された[14]

1895年ヴィルヘルム・レントゲンX線を発見し、1896年にはアンリ・ベクレルウラン放射能を、1898年にはピエール・キュリーマリ・キュリーがウランよりも強力な放射能を持つラジウムを発見した[15]。これが核物理学の起こりとなった。

原子の存在そのものは紀元前5世紀レウキッポスデモクリトス原子論によって想定されていたが[16]、近代的な原子論は1808年ジョン・ドルトンによって提唱された[17]ジョセフ・ジョン・トムソン1899年に、原子よりもはるかに小さな質量を持ち、負の電荷を持つ電子の発見を発表し[18]1904年には、最初の原子のモデルを提案した[19]。このモデルは現在プラムプディング模型として知られている[20]

現代物理学

1905年アルベルト・アインシュタイン特殊相対性理論を発表した[7]。アインシュタインの相対性理論において、時間空間は独立した実体とは扱われず、時空という一つの実体に統一される。相対性理論は、ニュートン力学とは異なる慣性座標系間の変換を定める。相対速度の小さな運動に関して、ニュートン力学と相対論は近似的に一致する。このことはニュートン力学の形式に沿って定式化された相対論的力学において明確になる。

1915年、アインシュタインは特殊相対性理論を拡張し、一般相対性理論で重力を説明した。特殊相対論によって、力学電磁気学の理論は整合的に説明できるようになったが、重力に関してはニュートンの万有引力の法則以上の満足な説明を与えることができなかった。一般相対論によって、重力の作用を含めた包括的な説明ができるようになった。一般相対論において、ニュートンの万有引力の法則は低質量かつ低エネルギーの領域における近似理論と見なすことができた。

1911年に、アーネスト・ラザフォードの下で原子の研究が進展し、その時の散乱実験から、電荷を持つ物質を核とする原子像(ラザフォード模型)が提唱された[21]原子核を構成する正電荷の粒子は陽子と呼ばれる。電気的に中性な構成物質である中性子1932年ジェームズ・チャドウィックによって発見された[22]

1900年代初頭に、マックス・プランク、アインシュタイン、ニールス・ボーアたちは量子論を発展させ、離散的なエネルギー準位の導入によってさまざまな特異な実験結果を説明した。1925年ヴェルナー・ハイゼンベルクらが[23]、そして1926年エルヴィン・シュレーディンガーポール・ディラック量子力学を定式化し[24]、それによって前期量子論は解釈された。量子力学において物理測定の結果は本質的に確率的である[25]。つまり、理論はそれらの確率の計算法を与える。量子力学は小さな長さの尺度での物質の振る舞いをうまく記述する。

また、量子力学は凝縮系物理学の理論的な道具を提供した。凝縮系物理学では誘電体半導体金属超伝導超流動磁性体といった現象、物質群を含む固体液体の物理的振る舞いを研究する。凝縮系物理学の先駆者であるフェリクス・ブロッホは、結晶構造中の電子の振る舞いの量子力学的記述を1928年に生み出した[26]

第二次世界大戦の間、核爆弾を作るという目的のために、研究は核物理の各方面に向けられた。ハイゼンベルクが率いたドイツの努力は実らなかったが、連合国のマンハッタン計画は成功を収めた。アメリカでは、エンリコ・フェルミが率いたチームが1942年に最初の人工的な核連鎖反応を達成し、1945年アメリカ合衆国ニューメキシコ州アラモゴードで世界初の核爆弾が爆発した。

場の量子論は、特殊相対性理論と整合するように量子力学を拡張するために定式化された。それは、リチャード・P・ファインマン朝永振一郎ジュリアン・セイモア・シュウインガーフリーマン・ダイソンらの仕事によって1940年代後半に現代的な形に至った。彼らは電磁相互作用を記述する量子電磁力学の理論を定式化した。

場の量子論基本的な力と素粒子を研究する現代の素粒子物理学の枠組みを提供した。1954年楊振寧ロバート・ミルズゲージ理論という分野を発展させた。それは標準模型の枠組みを提供した。1970年代に完成した標準模型は今日観測される素粒子のほとんどすべてをうまく記述する。

場の量子論の方法は、多粒子系を扱う統計物理学にも応用されている。松原武生は場の量子論で用いられるグリーン関数を、統計物理学において初めて使用した。このグリーン関数の方法はロシアアレクセイ・アブリコソフらにより発展され、固体中の電子の磁性や超伝導の研究に用いられた。

近年の状況

2018年時点において、物理学の多くの分野で研究が進展している。

スーパーカミオカンデの実験からニュートリノの質量が0でないことが判明した。このことを理論の立場から理解しようとするならば、既存の標準理論の枠組みを越えた理解が必要である。質量のあるニュートリノの物理は現在理論と実験が影響しあい活発に研究されている領域である。今後数年で粒子加速器によるTeV(テラ電子ボルト)領域のエネルギー尺度の探査はさらに活発になるであろう。実験物理学者はそこでヒッグス粒子超対称性粒子の証拠を見つけられるのではないかと期待している。

量子力学と一般相対性理論を量子重力の単一理論に統合するという半世紀以上におよぶ試みはまだ結実していない。現在の有望な候補はM理論ループ量子重力理論である。

宇宙物理学の分野でも1990年代から2000年代にかけて大きな進展が見られた。特に1990年代以降、大口径望遠鏡ハッブル宇宙望遠鏡COBEWMAP などの宇宙探査機によって格段に精度の良い観測データが大量に得られるようになり、宇宙論の分野でも定量的で精密な議論が可能になった。ビッグバン理論及びインフレーションモデルに基づく現代のΛ-CDM宇宙モデルはこれらの観測とよく合致しているが、反面、ダークマターの正体や宇宙の加速膨張を引き起こしていると考えられるダークエネルギーの存在など、依然として謎となっている問題も残されている。これ以外に、ガンマ線バースト超高エネルギー宇宙線の起源なども未解決であり、これらを解明するための様々な宇宙探査プロジェクトが進行している。

凝縮物質の物理において、高温超伝導の理論的説明は、未解明の問題として残されている。量子ドットなど単一の電子・光子を用いたデバイス技術の発展により、量子力学の基礎について実験的検証が可能になってきており、さらにはスピントロニクス量子コンピュータなどへの応用展開が期待される。

主要な分野の一覧

学問体系

研究方法

専門分野

関連分野・境界領域

手法

基礎概念の一覧

物理量

基本的な4つの力

物質の構成要素

図表の一覧

脚注

[脚注の使い方]
  1. ^ 古代ギリシア語ラテン翻字: physis
  2. ^ “History of Astronomy”. 2017年1月10日閲覧。
  3. ^ a b 和田, 純夫 『現代物理の世界がわかる: アリストテレスの自然哲学から超弦理論まで』ベレ出版、2002年6月、10-11頁。ISBN 9784939076992。 NCID BA57399468。 
  4. ^ a b c Andrew Zimmerman Jones. “Physics of the Greeks”. About Education. 1月10日2017年閲覧。
  5. ^ Howard, Ian; Rogers, Brian (1995). Binocular Vision and Stereopsis. Oxford University Press. ISBN 978-0-19-508476-4, p. 6-7
  6. ^ 物理学史I 1968, pp. 57–61
  7. ^ a b 物理学史I 1968, p. 79
  8. ^ アン・ルーニー 2015, p. 80
  9. ^ 物理学史I 1968, pp. 202–203
  10. ^ アン・ルーニー 2015, pp. 91–92
  11. ^ 物理学史I 1968, pp. 206–208
  12. ^ 「宇宙を解く唯一の科学 熱力学」p75-83 ポール・セン著 水谷淳訳 河出書房新社 2021年6月30日初版発行
  13. ^ a b 物理学史II 1968, pp. 24–31
  14. ^ 物理学史II 1968, p. 34
  15. ^ 物理学史II 1968, p. 47
  16. ^ アン・ルーニー 2015, pp. 18–20
  17. ^ アン・ルーニー 2015, p. 31
  18. ^ 物理学史II 1968, p. 105
  19. ^ 物理学史II 1968, pp. 134–135
  20. ^ アン・ルーニー 2015, p. 112
  21. ^ 物理学史II 1968, pp. 140–141
  22. ^ 物理学史II 1968, p. 200
  23. ^ 物理学史II 1968, p. 191
  24. ^ 物理学史II 1968, p. 198
  25. ^ 物理学史II 1968, p. 61
  26. ^ 物理学史II 1968, p. 202

参考文献

  • 奥田毅 『文科の物理』(改装)内田老鶴圃、1987年。 NCID BN03841957。 
  • 広重徹 『物理学史』 I、培風館〈新物理学シリーズ / 山内恭彦監修, 5〉、1968年。ISBN 4563024058。 NCID BN00957321。 
  • 広重徹 『物理学史』 II、培風館〈新物理学シリーズ / 山内恭彦監修, 6〉、1968年。ISBN 4563024066。 NCID BN00957321。 
  • アン・ルーニー、立木勝 訳 『物理学は歴史をどう変えてきたか 古代ギリシャの自然哲学から暗黒物質の謎まで』(1版)東京書籍、2015年8月。ISBN 9784487809295。 NCID BB19374823。 

関連項目

外部リンク

物理学
物理学, 物理, はこの項目へ転送されています, 岡山県にあった自治体, 物理, もどろい, については, 瀬戸地域, をご覧ください, この記事には複数の問題があります, 改善やノートページでの議論にご協力ください, 出典がまったく示されていないか不十分です, 内容に関する文献や情報源が必要です, 2016年3月, 出典は脚注などを用いて記述と関連付けてください, 2010年6月, 独自研究が含まれているおそれがあります, 2021年3月, 出典検索, ニュース, 書籍, スカラー, cinii, stage, . 物理 はこの項目へ転送されています 岡山県にあった自治体 物理 もどろい 村 については 瀬戸地域 をご覧ください この記事には複数の問題があります 改善やノートページでの議論にご協力ください 出典がまったく示されていないか不十分です 内容に関する文献や情報源が必要です 2016年3月 出典は脚注などを用いて記述と関連付けてください 2010年6月 独自研究が含まれているおそれがあります 2021年3月 出典検索 物理学 ニュース 書籍 スカラー CiNii J STAGE NDL dlib jp ジャパンサーチ TWLこの記事で示されている出典について 該当する記述が具体的にその文献の何ページあるいはどの章節にあるのか 特定が求められています ご存知の方は加筆をお願いします 2016年3月 ウィキブックスに物理学関連の解説書 教科書があります 物理学ウィキポータル 物理学執筆依頼 加筆依頼Category 物理学ウィキプロジェクト 物理学物理学 ぶつりがく 英 physics は 自然科学の一分野である 目次 1 概論 1 1 物理現象の微視的視点と巨視的視点 1 2 物理学と数学 1 3 物理学の発展と拡張 1 4 他分野との親和性 2 物理学の概略史 2 1 古代 2 2 中世 2 3 近代科学 2 4 電磁気学の発達 2 5 現代物理学 3 近年の状況 4 主要な分野の一覧 4 1 学問体系 4 2 研究方法 4 3 専門分野 4 4 関連分野 境界領域 4 5 手法 5 基礎概念の一覧 5 1 物理量 5 2 基本的な4つの力 5 3 物質の構成要素 6 図表の一覧 7 図 8 脚注 9 参考文献 10 関連項目 11 外部リンク概論 編集古代ギリシアの自然学 fysis 1 にその源があり 英語の physics という言葉も 元々は自然についての一般的な知識の追求を意味しており 天体現象から生物現象までを含む幅広い概念だった 19世紀から 物理現象のみを追求する physics として自然哲学から独立した意味を持つようになった 物理学の古典的な研究分野は 物体の運動 光と色彩 音響 電気と磁気 熱 波動 天体の諸現象 物理現象 である 化学 生物学 地学などほかの自然科学に比べ数学との親和性が非常に強い 物理現象の微視的視点と巨視的視点 編集 材料力学や流体力学は巨視的現象の法則からなる独立した物理学上の理論体系である ここで注意しなければならないのは材料力学や流体力学はそれらの適用範囲においては 他の理論から完全に閉じた理論体系として存在していることである 現代の物理学は たとえば素粒子論がある一方で熱力学があるように 巨視的現象の理論と微視的現象を記述する力学とをつなぐ理論や現象も 重要なテーマとして研究されている 一般的にこの分野では統計物理学と呼ばれる強力な手法が使われる ルートヴィッヒ ボルツマンらによって開発されたこの手法は 構成粒子の振る舞いを統計的に処理することによって 巨視的現象と結びつけるものである 要出典 物理学と数学 編集 物理学にとって数学は欠くことのできない道具である 自然現象を数式によって定量的に記述していくことは 物理学における基本的な方法論のひとつであり どんな教科書にも方程式が 特に微分方程式が よく登場する この写真は物理学の教科書の一例で 熱 統計力学に関する本 物理学では 理論やモデルを数式として表現することが多い これは 自然言語で記述するとどうしても厳密さに欠け 定量的な評価や複雑な推論をすることが難しいためである 要出典 数学は非常に強力な記号操作体系であるため 推論を一連の計算として実行することが可能なことと 複雑なモデルを正確 簡潔に表現することに適している 誰 物理学の研究において最も重要なステップの一つは 物理法則を数式に表現する前の段階 観測された事実の中から記述すべき基本的な要素を抽出する行為である 要出典 電磁気学に貢献したマイケル ファラデーが正規の教育を受けなかったため 数学的知識がなかったにもかかわらず さまざまな発見を成し遂げたことや ノーベル賞を受賞したリチャード P ファインマンが液体ヘリウムについて論じた論文やジョージ ガモフが初めてビッグバン理論を提唱した論文には数式が出てこないことは 自然界の中に記述すべき対象を見つけ出す営みが物理学において重要なステップであるということを示している 要出典 物理学の発展と拡張 編集 物理学の歴史は一見異なる現象を 同一の法則の異なる側面であるとして 統一的に説明していく歴史でもあった 要出典 物理学の歴史そのものについては後述 地上付近での物体の落下と月の運動を同じ万有引力によるものとしたニュートンの重力の理論は それまであった惑星の運動に関するケプラーの法則や ガリレイの落体運動の法則が万有引力の別の側面であることを示した ジェームズ クラーク マクスウェルは それまでアンドレ マリ アンペールやマイケル ファラデーらが個別に発見していた電気と磁気の法則が 電磁気という一つの法則にまとめられることを導き 電磁波の存在を理論的に予言し 光が電磁波の一種であることを示した 20世紀に入るとアルベルト アインシュタインが相対性理論によって 時間と空間に関する認識を一変させた 彼はさらに重力と電磁気力に関する統一場理論の研究に取り組んだが実現しなかった しかし その後も統一場理論に関する研究は他の研究者たちによって続けられ 新しく発見された核力も含めて統一しようとする努力が続けられた 1967年頃電磁気力と弱い力に関する統一場理論 ワインバーグ サラム理論 が提唱され 後の実験的な検証により理論の正当性が確立した この理論により 電磁気力と弱い力は同じ力の異なる側面として説明されることになった 自然界に存在する重力 電磁気力 強い力 弱い力の四つの相互作用のうち 上記の電弱統一理論を超えて 電磁気力 強い力 弱い力に関する統一場理論である大統一理論 重力 電磁気力 強い力 弱い力の四つの相互作用全てに関する統一場理論 例えば 超弦理論が候補 が研究されているが 実験的に検証されておらず 現在においても確立には至っていない しばしば 上記の四つの相互作用に関する統一場理論は 既存の物理現象がその理論一つを基礎として理解できると考えられるため 万物の理論と呼ばれることがある 古典的な物理学では 物理現象が発生する空間と時間は 物理現象そのものとは別々のものと考えられてきたが 重力の理論 一般相対性理論 によって 物質の存在が空間と時間に影響を与えること 物質とエネルギーが等価であることが解明されたことから 現代物理学では 物理現象に時間と空間 物質とエネルギーを含める 他分野との親和性 編集 物理学はほかの自然科学と密接に関係している 物理学で得られた知見が非常に強力なために 他の自然科学の分野の問題の解決に寄与することも多く 生物学 医学など他の分野との連携も進んでいる 特に化学においては密接に関連する分野が多く 特に物理学的な手法を用いる分野として物理化学という分野が設けられている 生物学においても 生物の骨格や筋肉を力学的に考察したり 遺伝子レベルでの解析や進化の物理的考察を行う分子生物学がある 地球科学においても地球を物理的な手法を用いて研究する地球物理学があり 地震学 気象学 海洋物理学 地球電磁気学等は地球物理学の代表的な分野であるといえる 今日の物理学は自然科学のみならず人文科学 社会科学とも関係している 人文科学においては哲学との学際領域に自然哲学がある また 心理学も精神物理学を通じて物理学と関係している 社会科学においては中学校 高等学校における教科としての物理は教育学と密接に関係しており 経済現象を物理的に解明する経済物理学は経済学との学際的分野であるといえる 物理学の概略史 編集この節は検証可能な参考文献や出典が全く示されていないか 不十分です 出典を追加して記事の信頼性向上にご協力ください このテンプレートの使い方 出典検索 物理学 ニュース 書籍 スカラー CiNii J STAGE NDL dlib jp ジャパンサーチ TWL 2010年6月 詳細は 物理学の歴史 を参照 古代 編集 プトレマイオスの天動説 天動説や暦の作成などの天文学が最古の物理学である 初期文明であるシュメール人 古代エジプト人 インダス文明などは太陽や月などの天体を観察した これらの天体は宗教的に崇拝され 現代からすれば非科学的な現象の説明もされたが これがのちの天文学や物理学へと成長する 2 16世紀以前のヨーロッパにおいて科学は キリスト教的な要素を含んだアリストテレスの自然哲学が主流であった 3 アリストテレスは物質の振る舞いを 目的論 もしくは 目的因 によって説明し 例えば天体が地球の周りを回るのは回転しようとする目的があるためだとした 3 自然哲学は観測よりも哲学を重視したため 試行的な試験で事象を説明する現代科学とは性質が異なる また この時既に数学は中東やエジプトなどで発達していたが 自然哲学的な物理に使われることはなかった 4 自然哲学 も参照しかし古代ギリシアにおいて実証的な考え方がされていなかったわけではなく 紀元前3世紀のアルキメデスは自然哲学では無視されていた数学を自然と結びつけ 数学や物理に数々の貢献をした 続くヒッパルコスやプトレマイオスなども幾何学や天文学を発達させた 4 また アリストテレスの時代より前の紀元前5世紀にはすでにレウキッポスやデモクリトスなどがそれまでの超自然的説明を否定して自然現象には原因となる理論があるとして原子の存在などを考えていた 4 中世 編集 中世のイスラームの学者は 他のギリシャ文化と共にアリストテレスの物理学を継承した その黄金期には観察と先験的な推論に重点を置いた初期の科学的方法を発展させた 最も注目すべきは イブン サール アル キンディー イブン アル ハイサム アル ファリス アビセナ等による視覚と視力の分野である アル ハイサムが書いた 光学の本 Kitabal Manaẓir は視覚に関する古代ギリシャの考え方を最初に反証したばかりでなく 新しい理論を作り出した この本では史上初 ピンホールカメラの現象を研究することで 目自体の仕組みをさらに詳しく調べた 解剖学と既存の知識を使って どのように光が目に入り 焦点が合い 目の後ろに投影されるかを説明したのである さらに 現代の写真撮影の開発から数百年前に 既にカメラ オブスクラを発明した 5 全7冊の 光学の本 Kitab al Manathir は 600年以上にわたって 東洋と西洋の中世の芸術における視覚の理論から 視点の性質への学問全体の考え方に大きな影響を与えた ロバート グロステストやレオナルド ダ ヴィンチから ルネ デカルト ヨハネス ケプラー アイザック ニュートンまで 後世の多くのヨーロッパの学者や思想家が影響を受けている 近代科学 編集 近代科学 も参照 自然哲学の数学的諸原理 と ニュートンのゆりかご 近世に入り 科学的研究法の発展の中で実験による理論検証の重要性が認識され始めた 16世紀後半 ガリレオ ガリレイは力学現象の研究を行い 落体の法則と慣性の法則を見出した 6 1687年にアイザック ニュートンは 自然哲学の数学的諸原理 を出版した 7 ニュートンの示した理論は ガリレイらの発見した法則を一般化し 包括的な説明を与えることに成功した ニュートンの理論の中で最も基礎的な法則として 運動の法則と万有引力の法則が挙げられる これらの法則は 天体の運行などの観測結果をよく説明することができた ニュートン自身は力学法則を幾何学を用いて記述したが オイラーなど後世の研究者によってそれらの理論は代数学的に記述されるようになった ジョゼフ ルイ ラグランジュ ウィリアム ローワン ハミルトンらは古典力学を徹底的に拡張し 新しい定式化 原理 結果を導いた 8 重力の法則によって宇宙物理学の分野が起こされた 宇宙物理学は物理理論をもちいて天体現象を記述する 18世紀から ロバート ボイル トマス ヤングら大勢の学者によって熱力学が発展した 1733年に ダニエル ベルヌーイが熱力学的な結果を導くために古典力学とともに統計論を用いた これが統計力学の起こりである 1798年に ランフォードは力学的仕事が熱に変換されることを示した 9 1820年代にはサディ カルノーがカルノーサイクルによる熱力学の研究を行い 10 1840年代に ジェームズ プレスコット ジュールは力学的エネルギーを含めた熱についてのエネルギーの保存則を証明した 11 1850年にはルドルフ クラウジウスが熱力学第一法則および熱力学第二法則を定式化した 12 電磁気学の発達 編集 マクスウェルの方程式 電気と磁気の挙動はマイケル ファラデー ゲオルク オームらによって研究された ジェームズ クラーク マクスウェルは1855年から1864年までに発表した3つの論文で マクスウェルの方程式で記述される電磁気学という単一理論で二つの現象を統一的に説明した 13 この理論によって光は電磁波であると予言された 13 この予言は後にハインリヒ ヘルツによって実証された 14 1895年にヴィルヘルム レントゲンがX線を発見し 1896年にはアンリ ベクレルがウランの放射能を 1898年にはピエール キュリーとマリ キュリーがウランよりも強力な放射能を持つラジウムを発見した 15 これが核物理学の起こりとなった 原子の存在そのものは紀元前5世紀にレウキッポスとデモクリトスの原子論によって想定されていたが 16 近代的な原子論は1808年にジョン ドルトンによって提唱された 17 ジョセフ ジョン トムソンは1899年に 原子よりもはるかに小さな質量を持ち 負の電荷を持つ電子の発見を発表し 18 1904年には 最初の原子のモデルを提案した 19 このモデルは現在プラムプディング模型として知られている 20 現代物理学 編集 詳細は 現代物理学 を参照 1905年 アルベルト アインシュタインは特殊相対性理論を発表した 7 アインシュタインの相対性理論において 時間と空間は独立した実体とは扱われず 時空という一つの実体に統一される 相対性理論は ニュートン力学とは異なる慣性座標系間の変換を定める 相対速度の小さな運動に関して ニュートン力学と相対論は近似的に一致する このことはニュートン力学の形式に沿って定式化された相対論的力学において明確になる 1915年 アインシュタインは特殊相対性理論を拡張し 一般相対性理論で重力を説明した 特殊相対論によって 力学と電磁気学の理論は整合的に説明できるようになったが 重力に関してはニュートンの万有引力の法則以上の満足な説明を与えることができなかった 一般相対論によって 重力の作用を含めた包括的な説明ができるようになった 一般相対論において ニュートンの万有引力の法則は低質量かつ低エネルギーの領域における近似理論と見なすことができた 1911年に アーネスト ラザフォードの下で原子の研究が進展し その時の散乱実験から 電荷を持つ物質を核とする原子像 ラザフォード模型 が提唱された 21 原子核を構成する正電荷の粒子は陽子と呼ばれる 電気的に中性な構成物質である中性子は1932年にジェームズ チャドウィックによって発見された 22 1900年代初頭に マックス プランク アインシュタイン ニールス ボーアたちは量子論を発展させ 離散的なエネルギー準位の導入によってさまざまな特異な実験結果を説明した 1925年にヴェルナー ハイゼンベルクらが 23 そして1926年にエルヴィン シュレーディンガーとポール ディラックが量子力学を定式化し 24 それによって前期量子論は解釈された 量子力学において物理測定の結果は本質的に確率的である 25 つまり 理論はそれらの確率の計算法を与える 量子力学は小さな長さの尺度での物質の振る舞いをうまく記述する また 量子力学は凝縮系物理学の理論的な道具を提供した 凝縮系物理学では誘電体 半導体 金属 超伝導 超流動 磁性体といった現象 物質群を含む固体と液体の物理的振る舞いを研究する 凝縮系物理学の先駆者であるフェリクス ブロッホは 結晶構造中の電子の振る舞いの量子力学的記述を1928年に生み出した 26 第二次世界大戦の間 核爆弾を作るという目的のために 研究は核物理の各方面に向けられた ハイゼンベルクが率いたドイツの努力は実らなかったが 連合国のマンハッタン計画は成功を収めた アメリカでは エンリコ フェルミが率いたチームが1942年に最初の人工的な核連鎖反応を達成し 1945年にアメリカ合衆国ニューメキシコ州のアラモゴードで世界初の核爆弾が爆発した 場の量子論は 特殊相対性理論と整合するように量子力学を拡張するために定式化された それは リチャード P ファインマン 朝永振一郎 ジュリアン セイモア シュウインガー フリーマン ダイソンらの仕事によって1940年代後半に現代的な形に至った 彼らは電磁相互作用を記述する量子電磁力学の理論を定式化した 場の量子論は基本的な力と素粒子を研究する現代の素粒子物理学の枠組みを提供した 1954年に楊振寧とロバート ミルズはゲージ理論という分野を発展させた それは標準模型の枠組みを提供した 1970年代に完成した標準模型は今日観測される素粒子のほとんどすべてをうまく記述する 場の量子論の方法は 多粒子系を扱う統計物理学にも応用されている 松原武生は場の量子論で用いられるグリーン関数を 統計物理学において初めて使用した このグリーン関数の方法はロシアのアレクセイ アブリコソフらにより発展され 固体中の電子の磁性や超伝導の研究に用いられた 近年の状況 編集2018年時点において 物理学の多くの分野で研究が進展している スーパーカミオカンデの実験からニュートリノの質量が0でないことが判明した このことを理論の立場から理解しようとするならば 既存の標準理論の枠組みを越えた理解が必要である 質量のあるニュートリノの物理は現在理論と実験が影響しあい活発に研究されている領域である 今後数年で粒子加速器によるTeV テラ電子ボルト 領域のエネルギー尺度の探査はさらに活発になるであろう 実験物理学者はそこでヒッグス粒子や超対称性粒子の証拠を見つけられるのではないかと期待している 量子力学と一般相対性理論を量子重力の単一理論に統合するという半世紀以上におよぶ試みはまだ結実していない 現在の有望な候補はM理論とループ量子重力理論である 宇宙物理学の分野でも1990年代から2000年代にかけて大きな進展が見られた 特に1990年代以降 大口径望遠鏡やハッブル宇宙望遠鏡 COBE WMAP などの宇宙探査機によって格段に精度の良い観測データが大量に得られるようになり 宇宙論の分野でも定量的で精密な議論が可能になった ビッグバン理論及びインフレーションモデルに基づく現代のL CDM宇宙モデルはこれらの観測とよく合致しているが 反面 ダークマターの正体や宇宙の加速膨張を引き起こしていると考えられるダークエネルギーの存在など 依然として謎となっている問題も残されている これ以外に ガンマ線バーストや超高エネルギー宇宙線の起源なども未解決であり これらを解明するための様々な宇宙探査プロジェクトが進行している 凝縮物質の物理において 高温超伝導の理論的説明は 未解明の問題として残されている 量子ドットなど単一の電子 光子を用いたデバイス技術の発展により 量子力学の基礎について実験的検証が可能になってきており さらにはスピントロニクスや量子コンピュータなどへの応用展開が期待される 主要な分野の一覧 編集学問体系 編集 力学 解析力学 古典力学 量子力学 相対論的量子力学 場の量子論 熱力学 統計力学 量子統計力学 非平衡統計力学 連続体力学 流体力学 電磁気学 光学 特殊相対論 一般相対論研究方法 編集 理論物理学 実験物理学 数理物理学 計算物理学専門分野 編集 素粒子物理学 高エネルギー物理学 原子核物理学 核物理学 核構造物理学 核反応論 ハドロン物理学 天文学 天体物理学 宇宙物理学 宇宙論 原子物理学 分子物理学 高分子物理学 物性物理学 凝縮系物理学 固体物理学 磁性物理学 金属物理学 半導体物理学 低温物理学 表面物理学 非線形物理学 流体力学 物性基礎論 統計物理学 数理物理学 プラズマ物理学 電磁流体力学 音響学関連分野 境界領域 編集 数学 物理数学 数理物理学 数値解析 計算機科学 計算物理学 化学 物理化学 量子化学 分析化学 生物学 生物物理学 分子生物学 工学 応用物理学 地球科学 地球物理学 地球電磁気学 地震学 海洋物理学 気象学 医学 医療物理学 放射線物理学 保健物理学 哲学 自然哲学 物理学の哲学 心理学 精神物理学 教育学 教科としての物理学 経済学 経済物理学 量子デバイス 量子コンピュータ 量子通信 量子暗号手法 編集 科学的研究法 測定 計測機器 次元解析 統計学 計算物理学 近似法 摂動論 調和振動子基礎概念の一覧 編集 物理学用語一覧 も参照 物質 反物質 力 相互作用 時間 空間 次元 時空 量子重力 対称性 保存則 量子異常 自発的対称性の破れ 光 波 磁気 電気 電磁波 量子 波動関数 量子絡み合い 観測問題 ボース粒子 フェルミ粒子 超対称性 場の量子論 標準模型物理量 編集 詳細は 物理量 を参照 質量 エネルギー 温度 位置 変位 長さ 速度 運動量 角運動量 スピン 力 モーメント トルク エントロピー基本的な4つの力 編集 詳細は 基本相互作用 を参照 重力相互作用 万有引力 電磁相互作用 弱い相互作用 強い相互作用物質の構成要素 編集 分子 原子 核子 素粒子 光子 ウィークボソン グルーオン 重力子 電子 ミューオン タウ粒子 ニュートリノ クォーク メソン バリオン 超対称性粒子 アキシオン モノポール 弦 ダークマター図表の一覧 編集物理学用語一覧 物理法則一覧 物理定数 SI基本単位 SI組立単位 SI接頭語 計量単位一覧 単位換算 物理学者一覧 ノーベル物理学賞 原子核崩壊図 分光学データ図 編集 古代エジプト天文学 ピンホールカメラの基本的な原理 理論物理学の基本分野 放物線状溶岩流 音響拡散器から反射した音の音響工学モデル レーザーの実験 稲妻は一種の電流である 宇宙飛行士と地球 微積分の応用 ハッブル超深場 ファインマン ダイアグラム 超電導のマイスナー効果 脚注 編集 脚注の使い方 古代ギリシア語ラテン翻字 physis History of Astronomy 2017年1月10日 閲覧 a b 和田 純夫 現代物理の世界がわかる アリストテレスの自然哲学から超弦理論まで ベレ出版 2002年6月 10 11頁 ISBN 9784939076992 NCID BA57399468 a b c Andrew Zimmerman Jones Physics of the Greeks About Education 1月10日2017年閲覧 Howard Ian Rogers Brian 1995 Binocular Vision and Stereopsis Oxford University Press ISBN 978 0 19 508476 4 p 6 7 物理学史I 1968 pp 57 61 a b 物理学史I 1968 p 79 アン ルーニー 2015 p 80 物理学史I 1968 pp 202 203 アン ルーニー 2015 pp 91 92 物理学史I 1968 pp 206 208 宇宙を解く唯一の科学 熱力学 p75 83 ポール セン著 水谷淳訳 河出書房新社 2021年6月30日初版発行 a b 物理学史II 1968 pp 24 31 物理学史II 1968 p 34 物理学史II 1968 p 47 アン ルーニー 2015 pp 18 20 アン ルーニー 2015 p 31 物理学史II 1968 p 105 物理学史II 1968 pp 134 135 アン ルーニー 2015 p 112 物理学史II 1968 pp 140 141 物理学史II 1968 p 200 物理学史II 1968 p 191 物理学史II 1968 p 198 物理学史II 1968 p 61 物理学史II 1968 p 202参考文献 編集奥田毅 文科の物理 改装 内田老鶴圃 1987年 NCID BN03841957 広重徹 物理学史 I 培風館 新物理学シリーズ 山内恭彦監修 5 1968年 ISBN 4563024058 NCID BN00957321 広重徹 物理学史 II 培風館 新物理学シリーズ 山内恭彦監修 6 1968年 ISBN 4563024066 NCID BN00957321 アン ルーニー 立木勝 訳 物理学は歴史をどう変えてきたか 古代ギリシャの自然哲学から暗黒物質の謎まで 1版 東京書籍 2015年8月 ISBN 9784487809295 NCID BB19374823 関連項目 編集ウィキペディアの姉妹プロジェクトで 物理学 に関する情報が検索できます ウィクショナリーの辞書項目 コモンズのメディア ウィキニュースのニュース ウィキクォートの引用句集 ウィキソースの原文 ウィキブックスの教科書や解説書 ウィキバーシティの学習支援 物理学者 物理学の未解決問題 数学 化学 工学外部リンク 編集日本大百科全書 ニッポニカ 物理学 コトバンク https ja wikipedia org w index php title 物理学 amp oldid 93663853 から取得, ウィキペディア、ウィキ、本、library、

論文

、読んだ、ダウンロード、自由、無料ダウンロード、mp3、video、mp4、3gp、 jpg、jpeg、gif、png、画像、音楽、歌、映画、本、ゲーム、ゲーム。